• Title/Summary/Keyword: Quantum-mechanical

Search Result 285, Processing Time 0.027 seconds

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Polymer Composites with Functionalized Graphene Nanoplatelets (기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구)

  • Cha, Jaemin;Kim, Jun Hui;Ryu, Ho Jin;Hong, Soon H.
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.316-322
    • /
    • 2017
  • Carbon fiber is a material with excellent mechanical, electrical and thermal properties, which is widely used as a composite material made of a polymer matrix. However, this composite material has a weak point of interlaminar delamination due to weak interfacial bond with polymer matrix compared with high strength and elasticity of carbon fiber. In order to solve this problem, it is essential to use reinforcements. Due to excellent mechanical properties, graphene have been expected to have large improvement in physical properties as a reinforcing material. However, the aggregation of graphene and the weak interfacial bonding have resulted in failure to properly implement reinforcement effect. In order to solve this problems, dispersibility will be improved. In this study, functionalization of graphene nanoplatelet was proceeded with melamine and mixed with epoxy polymer matrix. The carbon fiber reinforced polymer composites were fabricated using the prepared graphene nanoplatelet/epoxy and flexural properties and interlaminar shear strength were measured. As a result, it was confirmed that the dispersibility of graphene nanoplatelet was improved and the mechanical properties of the composite material were increased.

Theoretical Approach for the Equilibrium Structures and Relative Energies of C7H7+ Isomers and the Transition States between o-, m-, and p-Tolyl Cations

  • Shin, Chang-Ho;Park, Kyung-Chun;Kim, Seung-Joon;Kim, Byung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.337-345
    • /
    • 2002
  • The equilibrium structures for the ground and transition states of $C_7H_7^+$ isomers have been investigated using sophisticated ab initio quantum mechanical techniques with various basis sets. The structures of tropyrium and benzyl cations have been fully optimized at the DZP CCSD(T) levels of theory. And the structures of o-, m-and p-tolyl cations are optimized fully up to the DZ CCSD(T) levels of theory. The geometries for the transition states between three isomers of tolyl cations have been optimized up to DZP CISD level of theory. The SCF harmonic vibrational frequencies for tropylium, benzyl, and three isomers of tolyl cations are all real numbers, which confirm the potential minima and each unique imaginary vibrational frequencies for TS1 and TS2 confirm the true transition states. The relative energy of the benzyl cation with respect to the tropyrium cation is predicted to be 28.5 kJ/mol and is in good agreement with the previous theoretical predictions. The 0 K heats of formation, ${\Delta}H^{\circ}_{f0}$, have been predicted to be 890, 1095, 1101, and 1110 kJ/mol for tropylium, ortho-, meta-, and para-tolyl cations by taking the experimental value of 919 kJ/mol for the benzyl cation as the base level. The relative stability between tolyl cations is in the order of ortho

Modeling and Optimizing Brightness Development in Peroxide Bleaching of Thermomechanical Pulp

  • Wang, Li-Jun;Park, Kyoung-Hwa;Yoon, Byung-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.86-94
    • /
    • 1999
  • Alkaline peroxide bleaching of chemi-mechanical pulp is a very complicated system where various process factors affect the bleacing performance and pulp properties. Traditional onefactor-at a time method is ineffective and costly infinding the optimal bleaching conditions. In this study, statistical experimental design and multiple regression method wre used to investigated the interactions among various bleaching factors and to find out the possbile maximal brightness development during one stage alkaline peroxide bleacing of TMP. The TMP was made from 10% Korean red pine and 90% Korean spruce and had an initial brightness of 54.5% ISO. the TMP was pretreated with EDTA(0.5% on O.D. pulp, 3% pulp consistency, 30$^{\circ}C$ for 60 minutes) and bleached in a 2 L Mark V Quantum Reactor at 750 rmp, 7.5% of bleaching consistency and with 0.05% magnesium sulfate addition. The ranges of chemical factors studied , based on oven-ried pulp, were 1-5% for hydrogen peroxide, 1-4% for sodium hydroxide and 1-4% for sodium silicate. The rages of reaction temperature and time were 50-90$^{\circ}C$ and 40-180minutes respectively. Interactions of hydrogen peroxide with alkali , time with temperature ature, alkali with time and silicate with temperature were found to be significant which means that hydrogen peroxide bleaching will be favored at stable concentration of perhydroxyl ion, relatively short time and low temperature, and high level of silicate. Mathematical model which has good predictability for target brightness in one stage peroxide bleaching can also be established easily. Base ion the model, maximal brightness of 70% ISO was found to at 50$^{\circ}C$ and 50 minutes by chemical additions of 5% for hydrogen peroxide, 3.2-3.4% for sodium hydroxide and 4% for silicate based on O.D. pulp. However, this result might not be suitable for situation where furnishes are different from ours, or different pretreatment is used, or bleaching carried out at different pulp consistency. In these cases it will be good to re-investigate the process by a similar methodology as was used in this study.

  • PDF

Theoretical study on the structures and the electron affinities of cyclic perfluoroalkanes (c-PFA) (Cyclic perfluoroalkanes(c-PFA)의 분자구조 및 분광학적 성질에 관한 이론 연구)

  • Jeong, Sung-Yup;Shin, Chang-Ho;Kim, Seung-Joon
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.51-60
    • /
    • 2013
  • The geometrical parameters, vibrational frequencies, and adiabatic electron affinities (AEAs) for c-$C_nF_{2n}$ (n=8, 9) and $C_{10}F_{18}$ (perfluorodecalin) have been investigated using various quantum mechanical techniques. The possible structures for the neutrals and anions of c-PFA are fully optimized and electron affinities are predicted using energy difference between the neutral and anion. The harmonic vibrational frequencies are also determined and zero-point vibrational energies (ZPVEs) are considered for the better prediction of the electron affinities. The electron affinities are predicted to be 1.18 eV for c-$C_8F_{16}$ (ortho), 1.37 eV for c-$C_9F_{18}$, and 1.38 eV for $C_{10}F_{18}$ (perfluorodecalin) at the MP2 level of theory after ZPVE correction.

Optimizing and Modeling Brightness Development in Peroxide Bleaching of Thermomechanical Pulp

  • Yoon, Byung-Ho;Wang, Li-Jun;Park, Soo-Kyoung;Kim, Dong-Yoon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11a
    • /
    • pp.180-186
    • /
    • 1999
  • Alkaline peroxide bleaching of (chemi) mechanical pulp is a very complicated system where various process factors affect the bleaching performance and pulp properties. Traditional on-factor-at a time method is ineffective and costly in finding the optimal bleaching conditions. In this study statistical experimental methods which include three steps. I. e. screening, response surface modeling and optimization, were used to find the conditions for maximal brightness development during one stage alkaline peroxide bleaching of TMP which had an initial brightness of 54.5% Elerpho. The TMP was pretreated with EDTA(0.5% on O. D. pulp. consistency, $30^{\circ}C$ for 60 minutes) and bleached in a 2L Mark V Quantum Reactor at 750rpm, 7.5% of bleaching consistency and with 0.05% magnesium sulfate addition. The ranges of other factors studied were 1~5% hydrogen peroxide on O. D plup, 1~4% sodium hydroxide on O. D pulp and 1~4% sodium silicate on O. D pulp, reaction temperature 50~$90^{\circ}C$ and reaction time 40~180minutes. A models with good predictability was established and the maximal brightness after one stage bleaching was found to be 70% Elerpho at $50^{\circ}C$, 50 minutes 5% hydrogen peroxide on O. D. pulp 3.2~3.4% sodium hydroxide on O. D. pulp 3.2~3.4% sodium hydroxide on O. D pulp and 4% silicate on O. D pulp. However further studies on other pulp properties such as strength and brightness stability shall be carried out in order to find out the optimal bleaching conditions.

  • PDF

Quantum Mechanical Investigations for the Interactions between Fullerene and Encapsulated Waters (풀러렌-물 클러스터의 상호작용에 대한 양자 역학적 이론 연구)

  • Kim, Sung-Hyun;Shin, Chang-Ho;Kim, Ji-Sun;Kang, So-Yung;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The density functional theory (DFT) calculations on $(H_2O)_n@C_{60}$, (n=1-10) complexes have been performed to elucidate hydrogen interaction between fullerene and water clusters. The optimized geometries, harmonic vibrational frequencies, and binding energies are predicted at various levels of theory. The harmonic vibrational frequencies for the molecules considered in this study show all real numbers implying true minima. We also compare the H-bond interaction between $(H_2O)_n$ and $(H_2O)_n@C_{60}$, (n=1-10) clusters.

Hydrogen adsorption experiments with IRMOF-3 as a sorbent, and the molecular modeling studies on the functionalized MOFs (IRMOF-3 의 수소 흡착 실험 및 Organic Linker 의 작용기에 따른 분자모델링 연구)

  • Lee, Eungsung;Oh, Youjin;Yoon, Jihye;Kim, Jaheon;Kim, DaeJin;Lee, Tae-Bum;Choi, Seung-Hoon;Lee, Jun;Cho, Sung June
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.2
    • /
    • pp.108-118
    • /
    • 2004
  • To find out rational design and synthetic strategies toward efficient hydrogen storage materials, molecular modeling and quantum mechanical studies have been carried out on the MOFs(Metal-Organic Frameworks) having various organic linkers and nanocube frameworks. The calculation results about the free volume ratio, surface area, and electron density variation of the frameworks indicated that the capacity of the hydrogen storage of MOFs was largely dependent on the specific surface area and electron localization around benzene ring rather than the free volume of MOFs. The prediction of the modeling study could be supported by the hydrogen adsorption experiments using IRMOF-1 and -3, which showed more enhanced hydrogen storage capacities of IRMOF-3 compared with the IRMOF-1's at both experimental conditions, 77K, ∠ $H_2$ 1 atm and ambient temperature, ∠ $H_2$ 35 atm.

Characteristics of Molecular Band Energy Structure of Lipid Oxidized Mammalian Red Blood Cell Membrane by Air-based Atmospheric Pressure Dielectric Barrier Discharge Plasma Treatment

  • Lee, Jin Young;Baik, Ku Youn;Kim, Tae Soo;Jin, Gi-Hyeon;Kim, Hyeong Sun;Bae, Jae Hyeok;Lee, Jin Won;Hwang, Seung Hyun;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.1-262.1
    • /
    • 2014
  • Lipid peroxidation induces functional deterioration of cell membrane and induces cell death in extreme cases. These phenomena are known to be related generally to the change of physical properties of lipid membrane such as decreased lipid order or increased water penetration. Even though the electric property of lipid membrane is important, there has been no report about the change of electric properties after lipid peroxidation. Herein, we demonstrate the molecular energy band change in red blood cell membrane through peroxidation by air-based atmospheric pressure DBD plasma treatment. Ion-induced secondary electron emission coefficient (${\gamma}$ value) was measured by using home-made gamma-focused ion beam (${\gamma}$-FIB) system and electron energy band was calculated based on the quantum mechanical Auger neutralization theory. The oxidized lipids showed higher gamma values and lower electron work functions, which implies the change of surface charging or electrical conductance. This result suggests that modified electrical properties should play a role in cell signaling under oxidative stress.

  • PDF

증착조건에 따른 $ZrO_2$ 게이트 유전막의 특성

  • 유정호;남석우;고대홍
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.106-106
    • /
    • 2000
  • 반도체 소자가 미세화 됨에 따라 게이트 유전막으로 사용되는 SiO2의 박막화가 요구되나, boron penetration에 의한 Vt shift, 게이트 누설전류, 다결정 실리콘 게이트의 depletion effect 그리고 quantum mechanical effect 때문에 ~20 급에서 한계를 나타내고 있다. 이에 0.1$\mu\textrm{m}$이상의 design rule을 갖는 logic이나 memory 소자에서 요구되어지는 ~10 급 게이트 산화막은 SiO2(K=3.9)를 대신하여 고유전율을 갖는 재료의 채택이 필수 불가결하게 되었다. 고유전 박막 재료를 사용하면, 두께를 두껍게 해도 동일한 inversion 특성이 유지되고 carrier tunneling 이 덜하여 등가 산화막의 두께를 줄일 수 있다. 이러한 고유전박막 재료중 가장 활발히 연구되고 있는 재료는 Ta2O5, Al2O3, STO 그리고 BST 등이 있으나 Ta2O5, STO, BST 등은 실리콘 기판과 직접 반응을 한다는 문제를 가지고 있으며, Al2O3는 유전율이 낮의 재료가 최근 주목받고 있다. 본 실험에서는 ZrO2, HfO2 또는 그 silicates 등의 재료가 최근 주목 받고 있다. 본 실험에서는 ZrO2 박막의 증착조건에 따른 물리적, 전기적 특성 변화에 대하여 연구하였다. RCA 방식으로 세정한 P-type (100) 실리콘 기판위에 reactive DC sputtering 방법으로 압력 5mtorr, power 100~400W, 기판온도는 100-50$0^{\circ}C$로 변화시켜 ZrO2 박막을 증착한 후 산소와 아르곤 분위기에서 400-80$0^{\circ}C$, 10-120min으로 열처리하였다. 증착직후의 시편들과 열처리한 ZrO2 박막의 미세구조와 전기적 특성 변화를 관찰하였다. 우선 굴절율(RI)를 이용해 ZrO2 박막의 밀도를 예측하여 power와 기판온도에 따라 이론값 2.0-2.2 에 근접한 구조를 얻은 후 XRD, XPS, AFM, 그리고 TEM을 사용하여 ZrO2 박막의 chemical bonding, surface roughness 그리고 interfacial layer의 특성을 관찰하였다. 그리고 C-V, I-V measurement를 이용해 capacitance, 유전율, 누설전류 등의 전기적 특성을 관찰해 최적 조건을 설정하였다.

  • PDF

Assessment of Multiple Delamination in Laminated Composites for Aircrafts using X-ray Backscattering (X-ray 후방산란 기술을 이용한 항공기용 복합재료의 다중 층간 박리 평가)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • A Compton X-ray backscatter technique has been developed to quantitatively assess impact damage in quasi-isotropic laminated composites made by a drop-weight tester. X-ray backscatter imaging system with a slit-type camera is constructed to obtain a cross-sectional profile of impact-damaged laminated composites from the electron-density variation of the cross section. A nonlinear scattering model based on Boltsman equation is introduced to compute Compton X-ray backscattering field for the defect assessment. An adaptive filter is also used to reduce noises from many sources including quantum noise and irregular distributions of fibers and matrix in composites. Delaminations masked or distorted by the first delamination are detected and characterized effectively by the Compton X-ray backscatter technique, both in width and location, by application of error minimization algorithm.