Browse > Article
http://dx.doi.org/10.5806/AST.2013.26.1.051

Theoretical study on the structures and the electron affinities of cyclic perfluoroalkanes (c-PFA)  

Jeong, Sung-Yup (Department of Chemistry, HanNam University)
Shin, Chang-Ho (KT&G Central Research Institute)
Kim, Seung-Joon (Department of Chemistry, HanNam University)
Publication Information
Analytical Science and Technology / v.26, no.1, 2013 , pp. 51-60 More about this Journal
Abstract
The geometrical parameters, vibrational frequencies, and adiabatic electron affinities (AEAs) for c-$C_nF_{2n}$ (n=8, 9) and $C_{10}F_{18}$ (perfluorodecalin) have been investigated using various quantum mechanical techniques. The possible structures for the neutrals and anions of c-PFA are fully optimized and electron affinities are predicted using energy difference between the neutral and anion. The harmonic vibrational frequencies are also determined and zero-point vibrational energies (ZPVEs) are considered for the better prediction of the electron affinities. The electron affinities are predicted to be 1.18 eV for c-$C_8F_{16}$ (ortho), 1.37 eV for c-$C_9F_{18}$, and 1.38 eV for $C_{10}F_{18}$ (perfluorodecalin) at the MP2 level of theory after ZPVE correction.
Keywords
perfluoroalkanes; perfluorodecalin; electron affinities; DFT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. C. Clark and F. Gollan, Sci., 152, 1755-1756 (1966).   DOI   ScienceOn
2 K. C. Lowe, J. Mater. Chem., 16, 4189-4196 (2006).   DOI   ScienceOn
3 Jean G. Riess, Chem. Rev., 101(9), 2797-2919 (2001).   DOI   ScienceOn
4 K. C. Lowe, J. Fluorine Chem., 109, 59-65 (2001).   DOI   ScienceOn
5 K. C. Lowe, Tissue Eng., 9(3), 389-399 (2003).   DOI   ScienceOn
6 K. C. Lowe, J. Fluorine Chem., 118, 19-26 (2002).   DOI   ScienceOn
7 P. F. F. Amaral, M. G. Freire, M. H. M. Rocha-Leão, I. M. Marrucho, J. A. P. Coutinho and M. A. Z. Coelho, Biotechnol. Bioeng., 99(3), 588-598 (2008).   DOI   ScienceOn
8 M. K. Bakulin, V. I. Zakharov and E. V. Chebotarev, Appl. Biochem. Microbiol., 40(3), 266-271 (2004).   DOI
9 K. P. Shine, L. K. Gohar, M. D. Hurley, G. Marston, D. Martin, P. G. Simmonds, T. J. Wallington and M. Watkins, Atmos. Environ., 39, 1759-1763 (2005).
10 A. R. Ravishankara, S. Solomon, A. A. Turnipseed and R. F. Warren, Sci., 259, 194-199 (1993).   DOI   ScienceOn
11 R. G. Harrison and T. G. Richmond, J. Am. Chem. Soc., 115(12), 5303-5304 (1993).   DOI   ScienceOn
12 J. L. kiplinger, T. G. Richmond and C. E. Osterberg, Chem. Rev., 94(2), 373-431 (1994).   DOI   ScienceOn
13 B. K. Bennett, R. G. Harrison and T. G. Richmond, J. Am. Chem. Soc., 116(24), 11165-11166 (1994).   DOI   ScienceOn
14 R. A. Morris, T. M. Miller, A. A. Viggiano, J. F. Paulson, S. Solomon and G. Reid, J. Geophys. Res., 10(D1), 1287-1294 (1995).
15 G. Sanford, Tetrahedron, 59, 437-454 (2003).   DOI   ScienceOn
16 J. F. Liebman, J. Fluorine Chem., 3, 27-33 (1973).   DOI   ScienceOn
17 T. G. Richmond, Angew. Chem. Int. Ed., 39(18), 3241- 3244 (2000).   DOI
18 A. Paul, C. Wannere and H. F. Schaefer, J. Phys. Chem. A, 108(43), 9428-9434 (2004).   DOI   ScienceOn
19 T. M. Miller, R. A. Morris, E. S. Miller, A. A. Viggiano and J. F. Paulson, Int. J. Mass. Spectrom. Ion Processes, 135, 195-205 (1994).   DOI   ScienceOn
20 K. Hiraoka, T. Mizono, D. Eguchi and K. Takao, J. Chem. Phys., 116(17), 7574-7582 (2002).   DOI   ScienceOn
21 T. M. Miller, J. F. Friedman and A. A. Viggiano, J. Chem. Phys., 120(15), 7024-7028 (2004).   DOI   ScienceOn
22 G. A. Gallup, Chem. Phys. Lett., 399, 206-209 (2004)   DOI   ScienceOn
23 E. P. Grimsrud, S. Chowdhury and P. J. Kebarle, Chem. Phys., 83(3), 1059-1068 (1985).   DOI
24 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A, Gaussian, Inc., Wallingford CT, 2009.
25 A. Paul, C. S. Wannere, V. Kasalova, P. V. R. Schleyer and H. F. Schaefer III, J. Am. Chem. Soc., 127(44), 15457-15469 (2005).   DOI   ScienceOn
26 (a) A. D. Becke, J. Chem. Phys., 98, 5648 (1993). (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev., B37, 785 (1988).
27 T. H. Dunning, J. Chem. Phys., 90, 1007 (1989).   DOI
28 I. V. Beregovaya, L. N. Shchegoleva and V. I. Borovkov, J. Phys. Chem. A., 113(8), 1555-1558 (2009).   DOI   ScienceOn
29 V. M. Senyavin, I. V. Kochikov and G. M. Kuramshina, J. Mol. Struct., 410-411, 463-466 (1997).