• Title/Summary/Keyword: Quantum-Dots

Search Result 444, Processing Time 0.035 seconds

Down-Conversion Effect Applied to GaAs p-i-n Single Junction Solar Cell

  • Park, Jun-Seo;Kim, Ji-Hun;Go, Hyeong-Deok;Lee, Gi-Yong;Kim, Jeong-Hyeok;Han, Il-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.694-694
    • /
    • 2013
  • With the growing need of more effective energy harvesting, solar energy has been sought as one of the prominent candidates among the eco-friendly methods. Although many types of solar cells have been developed, the electronic conversion efficiency is limited by the material's physical properties: solar cells can only harvest solar energy from limited range in solar energy spectrum. To overcome this physical limit, we approached by using the down conversion effect, transforming the high energy photons to low energy photons, to the range the designated solar cell can convert to electronic energy. In our study, we have fabricated GaAs single junction solar cells and applied CdSe quantum dots for down-conversion. We examine the effects of such application on the solar cell efficiancy, fill-factor, JSC, VOC, etc.

  • PDF

Well Defined One-Dimensional Photonic Crystal Templated by Rugate Porous Silicon

  • Lee, Sung Gi
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.183-186
    • /
    • 2013
  • Well defined 1-dimentional (1-D) photonic crystals of polystyrene replicas have been successfully obtained by removing the porous silicon from the free-standing rugate porous silicon/phenylmethylpolysiloxane composite film. Rugate porous silicon was prepared by an electrochemical etching of silicon wafer in HF/ethanol mixture solution. Exfoliated rugate porous silicon was obtained by an electropolishing condition. A composite of rugate porous silicon/phenylmethylpolysiloxane composite film was prepared by casting a toluene solution of phenylmethylpolysiloxane onto the top of rugate porous silicon film. After the removal of the template by chemical dissolution, the phenylmethylpolysiloxane castings replicate the photonic features and the nanostructure of the master. The photonic phenylmethylpolysiloxane replicas are robust and flexible in ambient condition and exhibit an excellent reflectivity in their reflective spectra. The photonic band gaps of replicas are narrower than that of typical semiconductor quantum dots.

Carbon Nanotube FEDs for Low Power Character Displays

  • Uemura, Sashiro;Yotani, Junko;Nagasako, Takeshi;Kurachi, Hiroyuki;Nakao, Takehiro;Ito, Masaaki;Sakurai, Akira;Shimoda, Hideo;Ezaki, Tomotaka;Fukuda, Kazuhiko;Saito, Yahachi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1525-1528
    • /
    • 2008
  • High-luminance CNT-FED character-displays using simple line-rib-structure was performed. One display-panel had $48{\times}480$-dots and the sub-pixel pitch was 1mm. Another panel had $32{\times}256$-color-pixels, and the subpixel size was $0.6mm{\times}1.8mm$. The power consumption was less than 10W at character-displaying module. It should be useful for public display even under emergent no-power condition.

  • PDF

Fabrication of ZnO/TiO2 Nanoheterostructure and Its Application to Photoelectrochemical Cell

  • Song, Hong-Seon;Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.459.1-459.1
    • /
    • 2014
  • Because both $TiO_2$ and ZnO has superior characteristic optically and electrically, there are various of research for these materials. However, they have large band gap energy which correspond with not visible light, but UV light. To make up for this disadvantage, Quantum dots (CdS, CdSe) which can absorb the visible light could be deposited on $ZnO/TiO_2$ nanostructure so that the the photoelectrochecmical cell can absorb the light that has larger region of wavelength. Both $TiO_2$ and ZnO can be grown to one-dimensional nanowire structure at low temperature through solutional method. Three-dimensional hierarcical $ZnO/TiO_2$ nanostructure is fabricated by applying these process. Large surface area of this structure make the light absorbed more efficiently. Through type 2 like-cascade energy band structure of nanostructure, the efficient separation of electron-hole pairs is expected. Photoelectrochemical charateristics are found by using these nanostructure to photoelectrode.

  • PDF

Photoinduced Electron- and Energy-Transfer Processes in Supramolecules using Imide Compounds

  • Fujitsuka, Mamoru;Majima, Tetsuro
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • We summarize recent studies on photoinduced electron- and energy-transfer processes of various supramolecules including imide group(s) as a component. Recently, imides have been employed in various functional molecular systems, because of their excellent photophysical and electron accepting properties. Our research group also employed imides in various supramolecular systems such as donor-acceptor dyads, quantum dots, DNA, and so on. First, we summarize fundamental properties of imides such as photophysical and electrochemical properties. Then, photoinduced processes of imides in the supramolecular systems are described to show their applicability in the various fields.

Optical Properties of CdS@Ag Core-shell Structure Quantum Dots (CdS@Ag 코어 쉘 구조 양자점의 광학적 특성 연구)

  • 임상엽;이창열;정은희;최문구;최중길;박승한
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.6-7
    • /
    • 2003
  • 반도체 양자점 구조는 양자크기 효과를 이용하여, 인공적으로 원자와 같이 매우 좁은 선폭의 에너지준위를 만들어 낼 수 있다는 점에서 관심을 끌고 있는 물질 구조이다. 특히 양자점 구조는 크기에 따라 에너지 준위의 위치가 조절되므로, 기본적인 물성을 탐구하는 물리적인 관점에서 뿐만이 아니라 실용적인 관점에서도 이를 이용한 전자, 광전자 및 광소자에 관한 연구가 활발히 진행되고 있다. 반도체 양자점은 여러 가지 다양한 방법으로 제작되고 있는데 대표적으로 유리 안에 반도체 미세구조를 첨가하는 방법, Stranski-Krastanow 생장에 의한 자발 형성 방법, 리소그래피에 의한 식각 방법, 그리고 화학반응에 의해 콜로이드 상태로 제작하는 방법 등이 있다. (중략)

  • PDF

Calculation of the radiative lifetime of Wannier-Mott excitons in nanoclusters

  • Kukushkin, Vladimir A.
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • This study is aimed to calculate the radiative lifetime of Wannier-Mott excitons in nanoclusters of a narrow-bandgap semiconductor embedded in a wide-bandgap one. The nanocluster linear dimensions are assumed to be much larger than the radius of the exciton so that the latter is not destructed by the confinement potential as it takes place in small quantum dots. The calculations were carried out for an example of InAs nanoclusters put into the GaAs matrix. It is shown that the radiative lifetime of Wannier-Mott excitons in such clusters increases with the decrease of the cluster dimensions, this tendency being more pronounced at low temperatures. So, the creation of excitons in nanoclusters of a narrow-bandgap material embedded in a wide-bandgap one can be used to significantly prolong their radiative lifetime in comparison with that of excitons in a bulk semiconductor.

The Study on Optical Properties of ZnSe Nanocrystallite Quantum Dots (ZnSe 반도체 양자점의 광학적 성질 연구)

  • 최문구;임상엽;제구출;전영욱;천진우;박승한
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.254-255
    • /
    • 2000
  • 반도체 양자점은 수 백 개에서 수 만 개에 이르는 원자들로 이루어진 미세한 결정 구조로써 독특한 물성들을 나타내므로 많은 연구가 이루어지고 있다. 양자점은 전자와 양공을 공간적으로 구속하는 양자효과에 의하여 양자점의 크기가 엑시톤의 보어 반지름보다 작아질수록 띠간격 에너지가 청색 편이하고 엑시톤의 결합 에너지가 증가하며 에너지 전이가 불연속이 되어 진동자 세기가 집중되는 등 광학적인 성질이 크게 변화하게 된다. 이미 반도체 양자우물 구조의 연구에서 나타나듯이 차원이 더욱 감소된 양자점에서는 엑시톤의 광학적 비선형성이 증가할 것으로 기대되어 유리 조직 내에 첨가시킨 반도체 미세구조나 박막 생장 기법에 의한 자발 형성 양자점, 화학적인 방법으로 얻어지는 용액상의 콜로이드등 다양한 방법들로 반도체 양자점을 제작하고 있다. 특히 양자점의 크기 분포, 모양 조절 및 양자점의 규칙적인 배열 등은 양자점의 기본적인 물성 탐구에 있어서 뿐 아니라 기능성 소자로의 응용에 있어서 잠재성이 크기 때문에 다양한 연구들이 이루어지고 있다. (중략)

  • PDF