• Title/Summary/Keyword: Quantum simulation

Search Result 238, Processing Time 0.028 seconds

Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection

  • Jihun Moon;Jisu Kim;Heejun Chung;Sung-Woo Kwak;Kyung Taek Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3506-3513
    • /
    • 2023
  • In this paper, we demonstrate the neutron attenuation of dry cask shielding materials using the S670e helium-4 detector manufactured by Arktis Radiation Ltd. In particular, two materials expected to be applied to the TN-32 dry cask manufactured by ORANO Korea and KORAD-21 by the Korea Radioactive Waste Agency (KORAD) were utilized. The measured neutron attenuation was compared with our Monte Carlo N-Particle Transport simulation results, and the difference is given as the root mean square (RMS). For the fast neutron case, a rapid decline in neutron counts was observed as a function of increasing material thickness, exhibiting an exponential relationship. The discrepancy between the experimentally acquired data and simulation results for the fast neutron was maintained within a 2.3% RMS. In contrast, the observed thermal neutron count demonstrated an initial rise, attained a maximum value, and exhibited an exponential decline as a function of increasing thickness. In particular, the discrepancy between the measured and simulated peak locations for thermal neutrons displayed an RMS deviation of approximately 17.3-22.4%. Finally, the results suggest that a minimum thickness of 5 cm for Li-6 is necessary to achieve a sufficiently significant cross-section, effectively capturing incoming thermal neutrons within the dry cask.

Trans-disciplinary Approach to Molecular Modeling and Experiment in PDP Materials

  • Takaba, Hiromitsu;Serizawa, Kazumi;Onuma, Hiroaki;Kikuchi, Hiromi;Suzuki, Ai;Sahnoun, Riadh;Koyama, Michihisa;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Carpio, Carlos A. Del;Kubo, Momoji;Kajiyama, Hiroshi;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1441-1444
    • /
    • 2008
  • We developed ultra-accelerated quantum chemical molecular dynamics and spectroscopic characterization simulators for development of PDP materials. By combination of these simulators, realistic structure of PDP materials is drawn on the computer. Furthermore, based on the structures, various properties such as cathode luminescence spectrum and secondary electron emission, is successfully evaluated. The strategy of "Experiment integrated Computational Chemistry" using developed simulators will presented that has the potential in being powerful tool for designing the PDP materials.

  • PDF

APPLICATION OF A DUAL-ENERGY MONOCHROMATIC XRAY CT ALGORITHM TO POLYCHROMATIC X-RAY CT: A FEASIBILITY STUDY

  • Chang, S.;Lee, H.K.;Cho, G.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • In this study, a simple post-reconstruction dual-energy computed tomography (CT) method is proposed. A dual-energy CT algorithm for monochromatic x-rays was adopted and applied to the dual-energy CT of polychromatic x-rays by assigning a representative mono-energy. The accuracy of algorithm implementation was tested with mathematical phantoms. To test the sensitivity of this algorithm to the inaccuracy of representative energy value in energy values, a simulation study was performed with mathematical phantom. To represent a polychromatic x-ray energy spectrum with a single-energy, mean energy and equivalent energy were used, and the results were compared. The feasibility of the proposed method was experimentally tested with two different micro-CTs and a test phantom made of polymethyl methacrylate (PMMA), water, and graphite. The dual-energy calculations were carried out with CT images of all possible energy pairs among 40, 50, 60, 70, and 80 kVp. The effective atomic number and the electron density values obtained from the proposed method were compared with theoretical values. The results showed that, except the errors in the effective atomic number of graphite, most of the errors were less than 10 % for both CT scanners, and for the combination of 60 kVp and 70 kVp, errors less than 6.0 % could be achieved with a Polaris 90 CT. The proposed method shows simplicity of calibration, demonstrating its practicality and feasibility for use with a general polychromatic CT.

Reconstruction of Myocardial Current Distribution Using Magnetocardiogram and its Clinical Use (심자도를 이용한 심근 전류분포 복원과 임상적 응용)

  • 권혁찬;정용석;이용호;김진목;김기웅;김기영;박기락;배장호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.459-464
    • /
    • 2003
  • The source current distribution in a heart was reconstructed from the magnetocardiogram (MCG) and its clinical usefulness was demonstrated. MCG was measured using 40-channel superconducting quantum interference device (SQUID) gradiometers for a patient of Wolff-Parkinson-White (WPW) syndrome, which has an accessory pathway between the atria and the ventricles. Reconstruction of source current distribution in a plane below the chest surface was performed using minimum norm estimation (MNE) algorithm and truncated singular value decomposition (SVD), In the simulation, we confirmed that the current distributions. which were computed for the test dipoles, represented well the essential feature of the test current configurations, In the current map of WPW syndrome, we observed abnormal currents that would bypass the atrioventricular junction at a delta wave. However, we could not observe such currents any more after the surgery. These results showed that the obtained current distribution using MCG signals is consistent with the electrical activity in a heart and has clinical usefulness.

Dose Estimation Model for Terminal Buds in Radioactively Contaminated Fir Trees

  • Kawaguchi, Isao;Kido, Hiroko;Watanabe, Yoshito
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, biological alterations in the natural biota, including morphological changes of fir trees in forests surrounding the power plant, have been reported. Focusing on the terminal buds involved in the morphological formation of fir trees, this study developed a method for estimating the absorbed radiation dose rate using radionuclide distribution measurements from tree organs. Materials and Methods: A phantom composed of three-dimensional (3D) tree organs was constructed for the three upper whorls of the fir tree. A terminal bud was evaluated using Monte Carlo simulations for the absorbed dose rate of radionuclides in the tree organs of the whorls. Evaluation of the absorbed dose targeted 131I, 134Cs, and 137Cs, the main radionuclides subsequent to the FDNPP accident. The dose contribution from each tree organ was calculated separately using dose coefficients (DC), which express the ratio between the average activity concentration of a radionuclide in each tree organ and the dose rate at the terminal bud. Results and Discussion: The dose estimation indicated that the radionuclides in the terminal bud and bud scale contributed to the absorbed dose rate mainly by beta rays, whereas those in 1-year-old trunk/branches and leaves were contributed by gamma rays. However, the dose contribution from radionuclides in the lower trunk/branches and leaves was negligible. Conclusion: The fir tree model provides organ-specific DC values, which are satisfactory for the practical calculation of the absorbed dose rate of radiation from inside the tree. These calculations are based on the measurement of radionuclide concentrations in tree organs on the 1-year-old leader shoots of fir trees. With the addition of direct gamma ray measurements of the absorbed dose rate from the tree environment, the total absorbed dose rate was estimated in the terminal bud of fir trees in contaminated forests.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Electrical Characteristics of $\delta$-doped SiGe p-channel MESFET ($\delta$ 도핑된 SiGe p-채널 MESFET의 특성 분석)

  • 이관흠;이찬호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.541-544
    • /
    • 1998
  • A SiGe p-channel MESFET using $\delta-doped$ layers is designed and the considerable enhancement of the current driving capability of the device is observed from the result of simulation. The channel consists of double $\delta-doped$ layers separated by a low-doped spacer which consists of Si and SiGe. A quantum well is formed in the valence band of the Si/SiGe heterojunction and much more holes are accumulated in the SiGe spacer than those in the Si spacer. The saturation current is enhanced by the contribution of the holes inthe spacer. Among the design parameters that affect the performance of the device, the thickness of the SiGe layer and the Ge composition are studied. The thickness of $0~300\AA$ and the Ge composition of 0~30% are investigated, and the saturation current is observed to be increased by 45% compared with a double $\delta-doped$ Si p-channel MESFET.

  • PDF

A System for Describing Cis-Regulatory Machinery Unit

  • Kaminuma, Tsuguchika;Takai-Igarashi, Takako;Yukawa, Masumi;Tanaka, Yoshitomo;Tanaka, Hiroshi
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.427-430
    • /
    • 2005
  • Studies on cellular pathways and networks are now one of the most actively researched topics in all fields of biomedicine ranging from developmental biology to etiology. Many databases have been developed and quantitative simulation models have been proposed. One of the eventual goals of pathway/network studies is to integrate different types of pathway/network models and databases to simulate overall cellular responses. A bottleneck to this goal is modeling gene expression since the mechanism of this process is not yet fully unveiled. We are developing a small scale computer program called CiRMU (Cis-Regulatory Machinery Unit model) for describing, viewing, analyzing, and modeling the process of gene expression. A prototype system is being designed and implemented for analyzing functions of nuclear receptors.

  • PDF

Elastic Network Model for Nano and Bio System Analysis (나노 및 바이오 시스템 해석을 위한 탄성네트워크모델)

  • Kim, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.668-669
    • /
    • 2008
  • In this paper, we introduce various coarse-grained elastic network modeling (ENM) techniques as a novel computational method for simulating atomic scale dynamics in macromolecules including DNA, RNA, protein, and polymer. In ENM, a system is modeled as a spring network among representative atoms in which each linear elastic spring is well designed to replace both bonded and nonbonded interactions among atoms in the sense of quantum mechanics. Based on this simplified system, a harmonic Hookean potential is defined and used for not only calculating intrinsic vibration modes of a given system, but also predicting its anharmonic conformational change, both of which are strongly related with its functional features. Various nano and bio applications of ENM such as fracture mechanics of nanocomposite and protein dynamics show that ENM is one of promising tools for simulating atomic scale dynamics in a more effective and efficient way comparing to the traditional molecular dynamics simulation.

  • PDF

Electrical and Optical Propeties of a UV-Sensitive CCD Imager

  • Kim, Man-Ho;Choi, Jae-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.518-524
    • /
    • 2007
  • This paper describes several improved characterizations of the EPIC CCD, which now has modified electrode and channel structures. From a 3-D numerical simulation of the device, its channel doping and potential distributions are then observed for the optimization of the charge transfer. A wavelength-dependence on the device structure is observed in terms of the reflectivity of the incident radiation. The optical properties of ultra-low energy levels, when using an open-electrode structure, are then considered to improve their quantum efficiency.