• 제목/요약/키워드: Quantum dot sensitizer

검색결과 7건 처리시간 0.023초

PbS as a sensitizer for Quantum Dot-sensitized Solar Cell

  • 김우석;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.379-379
    • /
    • 2011
  • 본 연구에서는 황화납(PbS)을 감응 물질로 하는 양자점 감응형 태양전지를 제작하고 효율을 측정해보았다. 기판에 진공증착을 통해 seed layer를 형성하고 수열합성법으로 산화아연(ZnO) 나노선 어레이를 기른 후 SILAR(Successive ionic layer adsorption and reaction)법으로 PbS 양자점을 합성하였고, 농도와 cycle에 따른 특성의 변화를 주사전자현미경(SEM), X-선 회절, UV-visible spectrometer를 통해 확인하였다. SILAR법을 통해 PbS가 ZnO 나노선 위에 film 형태로 균일하게 성장한 것을 확인할 수 있었고, 이렇게 합성한 물질을 직접 태양전지로 제작하여 그 효율을 측정하였다. 또한 co-sensitizer 물질로 CdS를 합성하여 두 물질의 감응 물질로서의 성능을 확인하였다. PbS는 비교적 작은 밴드갭을 가지며 양자 제한 효과가 커 밴드갭 조절이 용이하며 여러 종류의 태양전지에서 이용되고 있다. 이러한 PbS를 감응 물질로 하는 양자점 감응형 태양전지 제작을 통해 태양전지에의 적용 가능성을 살펴보고 그러기 위해 필요한 부분들을 모색해보았다.

  • PDF

황화납/산화아연 나노선을 이용한 양자점 감응형 태양전지 (Quantum Dot Sensitized Solar Cell Using PbS/ZnO Nanowires)

  • 김우석;용기중
    • 청정기술
    • /
    • 제16권4호
    • /
    • pp.292-296
    • /
    • 2010
  • 황화납(PbS)을 감응물질로 하는 양자점 감응형 태양전지를 제작하고 효율을 측정해 보았다. 기판에 산화아연(ZnO) 나노선을 기른 후 SILAR(Successive ionic layer adsorption and reaction)법으로 PbS 양자점을 합성하고 이를 주사전자현미경(SEM), X-선 회절(XRD)을 통해 확인하였다. SILAR를 통해서 형성된 나노이종구조는 PbS 나노입자들이 ZnO 나노선 위에 균일하게 성장한 것을 확인할 수 있었다. 본 실험에서 PbS을 이용한 양자점 감응형 태양전지의 최고 효율은 one sun에서 0.075%로 나타났으며, 이는 기존의 다른 감응 물질에 비해 비교적 낮은 효율을 나타내었다. 이러한 요인으로는 i) ZnO와 PbS의 밴드갭 배열이 Type-I 형을 이룰 수 있는 가능성, ii) 다양한 크기의 밴드갭을 가지는 PbS에 의한 전자이동 방해 효과, iii) 전해질에 의한 PbS의 안정성 저하 등의 이유를 생각해 볼 수 있으며, 이를 해결하기 위해서는 PbS의 크기분포 조절과 새로운 전해질에 대한 연구가 향후 필요할 것으로 생각된다.

메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지 (Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films)

  • 이효중
    • 전기화학회지
    • /
    • 제18권1호
    • /
    • pp.38-44
    • /
    • 2015
  • 본 총설은 다공성의 메조포러스 이산화티타늄 박막을 기반으로 하는 양자점-감응 태양 전지의 최근 발전 과정에 대해 정리하였다. 나노스케일의 무기물 양자점이 가지는 본질적 특성에 기반하고 다양한 양자점 구성 물질을 이용하여, 용액-공정 기반의 다양한 3세대 박막 태양전지를 만들 수 있었다. 양자점 감응제는 준비하는 방법에 따라 크게 2가지로 나눌 수 있는데, 첫 번째는 콜로이드 형태로 용액상에서 준비한 다음 $TiO_2$ 표면에 붙이는 것이고 두 번째는 양자점 전구체가 녹아있는 화학조를 이용하여 직접 $TiO_2$ 표면에 성장시키는 것이다. 폴리썰파이드 전해질을 사용하여, 콜로이드 양자점 감응제의 경우는 최근 들어 정밀한 조성 조절을 통하여 전체 광전 변환효율이 ~7%에 이르렀고 화학조 침전법을 이용하여 준비된 대표적 감응제인 CdS/CdSe는 ~5%의 효율을 보이고 있다. 앞으로는 지금까지 보고된 양자점 감응제의 뛰어난 광전류 생성 능력을 유지하면서, 새로운 정공 전달체의 개발 및 계면 조절을 통한 개방 전압과 채움 상수의 개선을 통한 효율 증가 및 안정성에 관한 체계적 연구가 필요한 상황이다.

A stable solid state quantum dot sensitized solar cell with p-type CuSCN semiconductor and its dopping effect

  • 김희진;설민수;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.378-378
    • /
    • 2011
  • 본 연구에서는 ZnO 나노선 기판을 제작하여 그 위에 밴드갭이 낮은 물질인 CdS, CdSe를 증착시킨 후 p-type 반도체 물질인 CuSCN을 증착시켜 안정성이 향상된 양자점 감응형 태양전지를 제작하였다. ZnO 나노선 기판은 투명한 FTO 기판 위에 ZnO를 진공증착시켜 seed layer를 제작하고 그 위에 $10{\mu}m$정도의 길이의 나노와이어를 성장시킨 후, 밴드갭이 낮은 CdS, CdSe 물질과의 다중접합을 이용하여 제작하고, 이러한 나노선 구조위에 chemical solution deposition을 이용하여 ${\beta}$-CuSCN을 형성시켰다. 양자점 감응형 태양전지는 ZnO 나노선을 photoanode로 이용하고 ZnO 나노선은 암모니아수와 아연염을 이용한, 비교적 저온의 수열합성법을 통해 합성하였고, sensitizer로 쓰인 CdS, CdSe 물질은 CBD방식을 통하여 합성된 나노선 위에 in-situ로 접합시켰다. 또한, 기존의 액체전해질을 이용한 양자점 감응형 태양전지의 안정성을 향상시키기 위해 p-type의 반도체 물질인 CuSCN물질을 propyl sulfide를 이용, ${\sim}80^{\circ}C$의 열을 가하여 in-situ 방식으로 다공성 구조에 효율적으로 접합이 가능하도록 deposition하였다. 일반적으로, CuSCN film은 홀 전도체로서의 장점을 지닌 반면, 전도성이 낮은 단점이 있기 때문에 이를 향상시키기 위해서 첨가제를 이용, 농도에 따라서 전도도가 향상되고 셀의 성능이 향상되는 것을 확인하였다. 이와 같이 합성된 구조는 주사전자현미경(SEM), X-선 회절(XRD), 솔라시뮬레이터 등의 분석장비를 이용하여 태양전지로서의 특성을 분석하였다. 또한 안정성 평가를 위하여 시간에 따른 셀의 특성변화도 비교하였다.

  • PDF