• 제목/요약/키워드: Quantum computing in materials science

검색결과 5건 처리시간 0.021초

재료 과학을 변혁시키는 양자 컴퓨팅: 기본 원리와 나노 소재 응용 연구 동향 (Quantum Computing Revolutionizing Materials Science: Basic Principles and Trends in Applications for Nanomaterials )

  • 한재희;배준호
    • 한국전기전자재료학회논문지
    • /
    • 제37권6호
    • /
    • pp.590-599
    • /
    • 2024
  • Quantum computing is set to transform the field of materials science, offering computational methods that could far surpass conventional approaches for tackling intricate material design challenges. This review introduces the foundational principles of rapidly growing quantum computing and its application trends in the design and analysis of nanomaterials. We explain how quantum speedup, achieved through quantum algorithms utilizing qubit superposition and entanglement, is applied to material design. Additionally, the principles and research trends of quantum variational methods, including the Variational Quantum Eigensolver (VQE), which has recently gained attention as a quantum algorithm simulation technique, will be discussed. By combining new techniques based on quantum algorithms with the quantum speed-up, the quantum computing is expected to offer new insights into data-intensive materials research and provide innovative methodologies for the development of new functional materials. With the advancement of quantum algorithms, the field of materials science could enter a new era, enabling more precise and efficient approaches in materials design and functional analysis.

A review on a 4 K cryogenic refrigeration system for quantum computing

  • Park, Jiho;Kim, Bokeum;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권2호
    • /
    • pp.1-6
    • /
    • 2022
  • This paper reviews the literature that has been published since 1980s related to cryogenic refrigeration systems for quantum computing. The reason why such a temperature level of 10-20 mK is necessary for quantum computing is that the superconducting qubit is sensitive to even very small thermal disturbances. The entanglement of the qubits may not be sustained due to thermal fluctuations and mechanical vibrations beyond their thresholds. This phenomenon is referred to as decoherence, and it causes an computation error in operation. For the stable operation of the quantum computer, a low-vibration cryogenic refrigeration system is imperative as an enabling technology. Conventional dilution refrigerators (DR), so called 'wet' DR, are precooled by liquid helium, but a more convenient and economical precooling method can be achieved by using a mechanical refrigerator instead of liquid cryogen. These 'dry' DRs typically equip pulse-tube refrigerators (PTR) for precooling the DRs around 4 K because of its particular advantage of low vibration characteristic. In this review paper, we have focused on the development status of 4 K PTRs and further potential development issues will be also discussed. A quiet 4 K refrigerator not only serves as an indispensable precooler of DR but also immediately enhances the characteristics of low noise amplifiers (LNA) or other cryo-electronics of various type quantum computers.

Interband Transition and Confinement of Charge Carriers in CdS and CdS/CdSe Quantum Dots

  • Man, Minh Tan;Lee, Hong Seok
    • Applied Science and Convergence Technology
    • /
    • 제24권5호
    • /
    • pp.167-171
    • /
    • 2015
  • Quantum-confined nanostructures open up additional perspectives in engineering materials with different electronic and optical properties. We have fabricated unique cation-exchanged CdS and CdS/CdSe quantum dots and measured their first four exciton transitions. We demonstrate that the relationship between electronic transitions and charge-carrier distributions is generalized for a broad range of core-shell nanostructures. These nanostructures can be used to further improve the performance in the fields of bio-imaging, light-emitting devices, photovoltaics, and quantum computing.

계산과학플랫폼 기반 온라인 양자화학 실험 환경 개발 (Development of Online Quantum Chemistry Experiment Environment Based on Computational Science Platform)

  • 전인호;온누리;권예진;서정현;이종숙
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.97-107
    • /
    • 2020
  • This paper introduces an online experiment environment based on a computational science platform that can be used for various purposes ranging from basic education to quantum chemistry and professional quantum chemistry research. The simulation environment was constructed using a simulation workbench and simulation workflow, which are execution environment services of Science App provided by the computational science platform. We developed an environment in which learners can learn independently without an instructor by selecting experiment topics that can be used in various areas of chemistry, and offering the learning materials of the topics in a form of e-learning content that includes theory and simulation exercises. To verify the superiority of the proposed system, it was compared with WebMO, a state-of-the-art web-based quantum chemistry simulation service.

XOR 게이트를 이용한 다층구조의 QCA 반가산기 설계 (Multi-layer Structure Based QCA Half Adder Design Using XOR Gate)

  • 남지현;전준철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권3호
    • /
    • pp.291-300
    • /
    • 2017
  • 양자점 셀룰라 오토마타(QCA: quantum-dot cellular automata)는 셀룰라 오토마타와 유사하게 고안된 컴퓨팅 모델이며, 빠른 연산속도와 적은 전력손실로 차세대의 각광받는 기술도 떠오르고 있다. QCA는 최근 실험 결과와 함께 다양한 연구가 진행되고 있으며 나노 단위 소재로서 디바이스 밀도 및 상호 연결 문제를 해결할 수 있는 트랜지스터의 패러다임 중 하나이다. XOR(exclusive or) 게이트는 논리의 둘 중 하나가 참일 때 결과가 참이 되도록 작동하는 게이트이다. 제안하는 XOR 게이트는 5개의 층으로 구성되어 있다. 첫 번째 층은 OR 게이트, 세 번째 층과 다섯 번째 층은 AND 게이트로 구성되어 있고 중간에 두 번째 층과 네 번째 층은 통로로 구성하여 설계한다. 반가산기는 XOR 게이트와 AND 게이트로 이루어져 있다. 제안한 반가산기는 제안하는 XOR 게이트에서 셀 두 개를 추가하여 설계한다. 제안한 반가산기는 기존의 반가산기에 비해 보다 적은 수의 셀, 전체 면적, 그리고 클럭으로 구성한다.