• Title/Summary/Keyword: Quantum chemical calculations

Search Result 92, Processing Time 0.034 seconds

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

Structure and Luminescence Properties of Poly(1-hexyl-3,4-dimethyl-2,5-pyrrolylene)

  • Kang, Jun-Gill;Kim, Tack-Jin;Park, Chang-Moon;Woo, Lee-Sang;Kim, In-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.704-710
    • /
    • 2004
  • A poly(1-hexyl-3,4-dimethyl-2,5-pyrrolylene) (PHDP) was prepared and its luminescence in tetrahydrofuran (THF) was studied. When PHDP is excited by UV light, it produces very strong blue luminescence. The quantum yield of PHDP (Q = 36.9%) is much greater than that of the monomer, 1-hexyl-3,4-dimethylpyrrole (HDP) with Q = 0.61%. The principal luminescence of PHDP has a single decay component with ca. 1 ns, whereas the decay of HDP is complicated. The molecular structure and conformational behavior of HDP and the oligomers up to trimer have been also determined by ab initio Hartree-Fock (HF/6-31$G^{**}$), density functional theory (DFT-B3LYP/6-31$G^{**}$), and semiempirical (ZINDO) methods. According to the results of calculations, it is proposed that the enhanced quantum yield of the polymer PHDP results mostly from the ${\pi}$-conjugation between neighboring pyrrole rings.

Quasiclassical Trajectory Calculations for the Reaction Ne + H2+ → NeH+ + H

  • Wang, Yuliang;Tian, Baoguo;Qu, Liangsheng;Chen, Juna;Li, Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4210-4214
    • /
    • 2011
  • Quasiclassical trajectory (QCT) calculations of Ne + ${H_2}^+$ reaction have been carried out on the adiabatic potential energy surface of the ground state $1^2$ A'. The reaction probability of the title reaction for J = 0 has been calculated, and the QCT result is consistent with the previous quantum mechanical wave packet result. Quasiclassical trajectory calculations of the four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r$, ${\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. Due to the well in $1^2$ A' PES, the reagent vibrational excitation has greater influence on the polarization of the product rotational angular momentum vectors j' than the collision energy.

Calculated and Experimental UV and IR Spectra of Oligo-para-phenylenes

  • Park, Kwangyong;Lee, Tae-Won;Yoon, Min-Ju;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.531-538
    • /
    • 2014
  • The quantum mechanical properties of a series of oligo-para-phenylenes (2-11) were characterized using DFT B3LYP/6-311G(d,p) calculations. The global minimum among the various torsional conformers of an oligo-p-phenylene is calculated to be a twist conformation. A less stable planar conformation, in which all the dihedral angles in oligo-p-phenylene are restricted to be planar, has also been calculated. The total electronic energies, normal vibrational modes, Gibbs free energies, and HOMOs and LUMOs of the two different conformations (twisted and planar) of the oligo-p-phenylenes were analyzed. The energy differences between the HOMOs and LUMOs of the substrates are in accord with the maximum absorption peaks of the experimental UV spectra of 2-6. The calculated normal vibrational modes of 2-6 were comparable with their experimental IR spectra.

Finding of a Characteristic Reactive Region Common to Some Series of Chemical Carcinogens

  • Park, Byung-Kak;Lee, Moon-Hawn;Do, Sung-Tag
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-107
    • /
    • 1985
  • Quantum chemical calculations were carried out to explain how the electronic states of some series compounds vary with metabolic activation. Compounds studied included aromatic amines and amides, polycyclic hydrocarbons, and a few alkylating agents that do not require metabolic activation. The 1, 2 and 4 positions forming the trans-butadiene frame of a molecule, henceforth referred to as "the trans 1, 2, 4 region", have seen to be important positions for the prediction of carcinogenic activity of these compounds. It is also evident that their electrophilic properties increase with metabolic activation. That is the sum of ${\pi}$-electron densities of the trans 1, 2, 4 region in the lowest unoccupied molecular orbital (LUMO) has been found to increase in the order of precarcinogens < proximate-ones < the carbocation ultimate-ones. This is consistent with the fact that chemical carcinogens become more strongly electrophilic with activating. This region not only provides a unified view of structurally diverse carcinogens, but also predicts uniformity in their reactive sites. Accordingly, we suggest that an understanding of the trans 1, 2, 4 region would be helpful in elucidating the mechanism of carcinogenesis.

Quantum Chemical Calculations on the Conformational Structure of the Alanine Oligomer Model (알라닌 올리고머의 배좌구조에 관한 양자화학적 계산)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1563-1570
    • /
    • 2015
  • Conformational change during chain propagation of alanine oligomer was investigated by quantum chemical calculation(QCC) using 2~5mers(${\times}=2{\sim}5$) models. For estimation of the end group effects, two types of end group. "amide type" ($CH_3CONH-and-CONHCH_3$) and "methyl type" ($CH_3CONH-and-CONHCH_3$), were prepared as both ends(N-and-C). Conformers optimized for 5-mer converged to three types of ${\Phi}/{\Psi}$ : ${\alpha}$-helix(g+/g+, or g-/g-), PPII-like(extended helix-like, g+/g-, or g-/g+), and ${\beta}$-extended (t+/t-, or t-/t+), in the order of lower energy, and the energies of left- and right- handed conformers were the same (5-mer. amide type ${\Delta}E=-1.05$, right type ${\Delta}E=-1.62$). Energies of the monomer unit(${\Delta}E$) of ${\alpha}$-helix decreased with increases of monomer.

Quantum Chemical Calculations of Silica Hydroxyls as Acid Site (실리카 수산기의 산성에 관한 양자화학적 해석)

  • Kim, Myung Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.262-266
    • /
    • 1997
  • The CNDO/2 calculations have been applied on cluster models for the representative hydroxyls on silica surface to get Wiberg bond orders, total energies, LUMO energies, dipole moments, and formal charge densities. The Br${\ddot{o}}$nsted acidities of suggested models for the hydroxyls were explained in terms of Wiberg bond orders. The calculated bond orders of cluster models have been changed remarkably according to the hydrogen bond. However the Lewis acidities of terminal hydroxyls on silica surface were not related to the structure of hydroxyls.

  • PDF

Nystatin Drug as an Effective Corrosion Inhibitor for Mild Steel in Acidic Media- An Experimental and Theoretical Study

  • Mehmeti, Valbone
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.21-31
    • /
    • 2022
  • Potentiodynamic polarization, EIS measurements, quantum chemical calculations, and molecular dynamic simulations were used to investigate the corrosion behavior of mild steel in 0.5 M aqueous hydrochloric acid medium in the presence or absence of nystatin drug. Potentiodynamic tests suggested that this molecule could act as a mixed inhibitor due to its adsorption on the mild steel surface. The objective of this study was to exploit theoretical calculations to gain a better understanding mechanism of inhibition. Calculating the adsorption behavior of the investigated molecule on Fe (1 1 0) surface was accomplished using Monte Carlo simulation. Molecules were also investigated using Density Functional Theory (DFT), specifically PBE functional, in order to identify the link between molecular structure and corrosion inhibition behavior of the compound under investigation. Adsorption energies between nystatin and iron were estimated more accurately by utilizing Molecular Mechanics calculation with Periodic Boundary Conditions (PBC). Estimated theoretical parameters significantly assisted our understanding of the corrosion inhibition mechanism exhibited by this molecule. They were found to be in accord with experimental results.

Quantum Chemical Calculation of NO Decomposition over Cu-Y Zeolite (Cu-Y 제올라이트상의 NO분해반응에 대한 양자화학적 해석)

  • Kim, Myung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.321-325
    • /
    • 1996
  • Quantum chemical calculations are used to characterize the decomposition of nitrogenmonoxide over $Cu^{n+}$-Y zeolite. The method of theoretical calculations, such as CNDO/2, have been applied to cluster models representing cation sites in zeolite to obtain total energies, LUMO energies, and Wiberg bond orders. The calculated total energies and bond orders of cluster models showed the reaction mechanism of NO decomposition over $Cu^{n+}$ site in zeolite framework. The suggested cluster models of varying Si/Al ratios studied with exchange cations in the $Cu^+$ and in the $Cu^{2+}$ states. And the calculated LUMO energies can predict L acidifies of cluster models. The results from these experiments showed the possibility of the mechanism of NO decomposition, progressing adsorption of NO, conversion to $N_2$ and $O_2$, desorption of $N_2$ and $O_2$ in sequence. The L acidity of $Cu^{2+}$ ion in cation site is more strong than $Cu^+$.

  • PDF

Loss of HCN from the Pyrazine Molecular Ion: A Theoretical Study

  • Jung, Sun-Hwa;Yim, Min-Kyoung;Choe, Joong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2301-2305
    • /
    • 2011
  • The potential energy surface (PES) for the loss of HCN or HNC from the pyrazine molecular ion was determined based on quantum chemical calculations using the G3//B3LYP method. Four possible dissociation pathways to form four $C_3H_3N^{+{{\bullet}}$ isomers were examined. A Rice-Ramsperger-Kassel-Marcus quasi-equilibrium theory model calculation was performed to predict the dissociation rate constant and the product branching ratio on the basis of the obtained PES. The resultant rate constant for the HCN loss agreed with the previous experimental result. The kinetic analysis predicted that the formation of $CH=CHN{\equiv}CH^{+{\bullet}}+HCN$ was predominant, which occurred by three consecutive steps, a C-C bond cleavage to form a linear intermediate, a rearrangement to form an H-bridged intermediate, and elimination of HCN.