Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.7.2301

Loss of HCN from the Pyrazine Molecular Ion: A Theoretical Study  

Jung, Sun-Hwa (Department of Chemistry, Dongguk University-Seoul)
Yim, Min-Kyoung (Department of Chemistry, Dongguk University-Seoul)
Choe, Joong-Chul (Department of Chemistry, Dongguk University-Seoul)
Publication Information
Abstract
The potential energy surface (PES) for the loss of HCN or HNC from the pyrazine molecular ion was determined based on quantum chemical calculations using the G3//B3LYP method. Four possible dissociation pathways to form four $C_3H_3N^{+{{\bullet}}$ isomers were examined. A Rice-Ramsperger-Kassel-Marcus quasi-equilibrium theory model calculation was performed to predict the dissociation rate constant and the product branching ratio on the basis of the obtained PES. The resultant rate constant for the HCN loss agreed with the previous experimental result. The kinetic analysis predicted that the formation of $CH=CHN{\equiv}CH^{+{\bullet}}+HCN$ was predominant, which occurred by three consecutive steps, a C-C bond cleavage to form a linear intermediate, a rearrangement to form an H-bridged intermediate, and elimination of HCN.
Keywords
Potential energy surface; G3//B3LYP calculation; RRKM calculation; Kinetics; Reaction pathway;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A. 02; Gaussian, Inc., Wallingford CT, 2009.
2 Baboul, A. G.; Curtiss, L. A.; Redfern, P. C. J. Chem. Phys. 1999, 110, 7650.   DOI   ScienceOn
3 Beyer, T.; Swinehart, D. R. ACM Commun. 1973, 16, 379.   DOI
4 Scott, A. P.; Radom, L. J. Phys. Chem. A 1996, 100, 16502.   DOI   ScienceOn
5 Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764.   DOI   ScienceOn
6 Lifshitz, C. Adv. Mass Spectrom. 1989, 11, 713.
7 Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; D., L. R.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17 (Suppl. No. 1).
8 Kim, S. Y.; Choe, J. C. Int. J. Mass Spectrom. 2010, 295, 65.   DOI   ScienceOn
9 Kim, S. Y.; Choe, J. C. Bull. Korean Chem. Soc 2010, 31, 2589.
10 Billes, F.; Klostermann, K. ACH-Models in Chemistry 1997, 134, 199.
11 Lin, M. F.; Dyakov, Y. A.; Tseng, C. M.; Mebel, A. M.; Lin, S. H.; Lee, Y. T.; Ni, C. K. J. Chem. Phys. 2005, 123, 054309.   DOI   ScienceOn
12 Lin, M. F.; Dyakov, Y. A.; Tseng, C. M.; Mebel, A. M.; Lin, S. H.; Lee, Y. T.; Ni, C. K. J. Chem. Phys. 2006, 124, 084303.   DOI   ScienceOn
13 Yim, M. K.; Choe, J. C. J. Phys. Chem. A 2011, ASAP.
14 Fridh, C.; Asbrink, L.; Jonsson, B. O.; Lindholm, E. Int. J. Mass Spectrom. Ion Phys. 1972, 9, 485.   DOI   ScienceOn
15 Dargel, T. K.; Koch, W.; Lavorato, D. J.; McGibbon, G. A.; Terlouw, J. K.; Schwarz, H. Int. J. Mass Spectrom. 1999, 185, 925.   DOI   ScienceOn
16 Karapanayiotis, T.; Dimopoulos-Italiano, G.; Bowen, R. D.; Terlouw, J. K. Int. J. Mass Spectrom. 2004, 236, 1.   DOI   ScienceOn
17 Vall-Llosera, G.; Coreno, M.; Erman, P.; Huels, M.; Jakubowska, K.; Kivimaki, A.; Rachlew, E.; Stankiewicz, M. Int. J. Mass Spectrom. 2008, 275, 55.   DOI   ScienceOn
18 Buff, R.; Dannacher, J. Int. J. Mass Spectrom. Ion Processes 1984, 62, 1.   DOI   ScienceOn
19 Amunugama, R.; Rodgers, M. T. Int. J. Mass Spectrom. 2000, 195, 439.   DOI   ScienceOn
20 NIST Chemistry WebBook, NIST Standard Reference Database Number 69.
21 Choe, J. C. J. Phys. Chem. A 2006, 110, 7655.   DOI   ScienceOn
22 Porter, Q. N. Mass Spectrometry of Heterocyclic Compounds, 2nd ed.; John Wiley & Sons: New York, 1985.
23 Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics: Theory and Experiments; Oxford University Press: New York, 1996.
24 Choe, J. C. Int. J. Mass Spectrom. 2004, 237, 1.   DOI   ScienceOn
25 Choe, J. C. Chem. Phys. Lett. 2007, 435, 39.   DOI   ScienceOn
26 Choe, J. C. J. Phys. Chem. A 2008, 112, 6190.   DOI   ScienceOn
27 Choe, J. C. Int. J. Mass Spectrom. 2008, 278, 50.   DOI   ScienceOn
28 Choe, J. C. Int. J. Mass Spectrom. 2009, 286, 104.   DOI   ScienceOn
29 Choe, J. C.; Cheong, N. R.; Park, S. M. Int. J. Mass Spectrom. 2009, 279, 25.   DOI   ScienceOn
30 Kim, S. Y.; Choe, J. C. Int. J. Mass Spectrom. 2010, 294, 40.   DOI   ScienceOn