본 논문은 글자 영상을 효과적으로 확대 (up-scaling)하기 위한 학습 기반 초고해상도 (super-resolution; SR) 기법을 제안한다. 제안 기법은 크게 학습 단계와 합성 단계로 나뉜다. 학습 단계에서 다양한 HR (high-resolution) /LR (low-resolution) 글자 영상 쌍들을 수집한다. LR영상들은 양자화를 하고, 충분히 많은 수의 HR-LR 블록쌍들을 추출한다. 양자화된 LR블록을 기준으로 블록 쌍들을 소정의 개수의 클래스들로 구분한다. 클래스 별로 최적의 2D-FIR 필터 계수를 계산하고, 양자화한 후색인용 LR 블록과 함께 사전에 저장한다. 합성 단계에서 입력 LR 영상 내 각 블록을 양자화한 후 사전 내 양자화된 LR블록들과 정합하여 가장 근사한 블록에 대응하는 FIR 필터계수를 선정한다. 마지막으로 선택된 FIR필터로 HR 블록을 합성하여 최종적인 HR영상을 생성한다. 또한, 우리는 잡음이 있는 글자 영상에 대응하기 위해 학습과정에서 잡음 세기에 따른 복수개의 사전들을 제작한다. 입력 LR 영상의 잡음 레벨에 맞는 사전을 선택하여 HR영상을 합성한다. 실험 결과는 제안 기법이 종래 기법보다 잡음이 없는 환경에서는 물론 잡음이 있는 환경에서 우수한 주관적/객관적 화질을 가짐을 보인다.
This paper is a study on Korean word recognition and suggest the method that stabilizes the state-transition in the HMM by applying the `inertia' to the feature vector sequences. In order to reduce the quantized distortion considering probability distribution of input vectors, we used SOFM, an unsupervised learning method, as a vector quantizer, By applying inertia to the feature vector sequences, the overlapping of probability distributions for the response path of each word on the self organizing feature map can be reduced and the state-transition in the Hmm can be Stabilized. In order to evaluate the performance of the method, we carried out experiments for 50 DDD area names. The results showed that applying inertia to the feature vector sequence improved the recognition rate by 7.4% and can make more HMMs available without reducing the recognition rate for the SOFM having the fixed number of neuron.
In this paper, we propose a super-resolution method that reconstructs compressed low-resolution images into high-resolution images. We propose a CNN model with a small number of parameters, and even if quantization is applied to the proposed model, super-resolution can be implemented without deteriorating the image quality. To further improve the quality of the compressed low-resolution image, a new degradation model was proposed instead of the existing bicubic degradation model. The proposed degradation model is used only in the training process and can be applied by changing only the parameter values to the original CNN model. In the super-resolution image applying the proposed degradation model, visual artifacts caused by image compression were effectively removed. As a result, our proposed method generates higher PSNR values at compressed images and shows better visual quality, compared to conventional CNN-based SR methods.
본 논문에서는 블록 분류와 코딩과 함께 신경회로망을 이용한 영상압축을 보였다. 오차 역전파 알고리즘으로 학습되는 다층구조 신경회로망은 정규화된 영상데이타를 감소된 공간 중복성을 가지는 은닉층의 값으로 변환하는데 사용된다. 기본적으로 영상압축은 입력층과 출력층의 뉴런보다 적은 수의 은닉층 뉴런에 의해 얻어진다. 여기에 시각체계의 민감도에 따른 영상블럭 복잡성에 따라 적응적으로 압축되므로 블록을 분류한다. 또한 은닉뉴런의 양자화된 값은 효과적인 전송을 위해 entropy coding을 이용한 경우 화질의 큰 저하없이 약 25:1의 압축률을 얻었다.
본 연구에서는 퍼지사상화(fuzzy mapping)와 FLVQ(fuzzy learning vector quantization)에 의한 사상된(mapped)코드북을 사용하는 화자적용 음성합성 알고리즘 을 제안하고, 기존의 음성합성결과와 비교한다. 입력화자와 기준화자의 코드북은 FLVQ 방법으로 작성한다. 사상된 코드북은 퍼지 히스토그램을 작성하여 이들을 선형 결합함으로써 얻어지는 퍼지 사상화에 의하여 작성된다. 대응 코드벡터의 퍼지 히스 토그램은 동일 입력벡터에 대해 선택된 입력화자의 코드벡터와 기준화자의 코드벡터 사이의 DTW(dynamic time warping)을 행하여 대응하는 코드벡터들의 소속값 (membership value)을 누적하여 얻는다. 음성합성시에는 사상된 코드북을 사용하여 입력화자의 음성을 퍼지벡터 양자화한 다음, FCM(fuzzy c means) 합성규칙을 사용하 여 사상된 코드북내의 코드벡터가 아닌 새로운 하나의 합성벡터를 얻게 되어 좀 더 입력화자에 적응된 합성음을 얻게 된다. 이 기술의 성능평가는 성별이 서로 다른 화 자를 입력화자 및 기준화자로 선정하여 입력화자의 음성에 가까운 정도로 평가하였으 며 그 결과 기존의 음성합성보다 입력화자에 더 적용된 합성음을 얻었다.
Ho-Chul Kim;Ho-Seong Hwang;Kwon-Hee Lee;Min-Hee Kim
PNF and Movement
/
제22권1호
/
pp.43-54
/
2024
Purpose: Falls among persons older than 65 years are a significant concern due to their frequency and severity. This study aimed to develop a vest-type embedded artificial intelligence (AI) system capable of detecting and predicting falls in various scenarios. Methods: In this study, we established and developed a vest-type embedded AI system to judge and predict falls in various directions and situations. To train the AI, we collected data using acceleration and gyroscope values from a six-axis sensor attached to the seventh cervical and the second sacral vertebrae of the user, considering accurate motion analysis of the human body. The model was constructed using a neural network-based AI prediction algorithm to anticipate the direction of falls using the collected pedestrian data. Results: We focused on developing a lightweight and efficient fall prediction model for integration into an embedded AI algorithm system, ensuring real-time network optimization. Our results showed that the accuracy of fall occurrence and direction prediction using the trained fall prediction model was 89.0% and 78.8%, respectively. Furthermore, the fall occurrence and direction prediction accuracy of the model quantized for embedded porting was 87.0 % and 75.5 %, respectively. Conclusion: The developed fall detection and prediction system, designed as a vest-type with an embedded AI algorithm, offers the potential to provide real-time feedback to pedestrians in clinical settings and proactively prepare for accidents.
뉴럴 디코딩은 뉴론이 발화한 스파이크 트레인으로부터 뉴론에 인가된 원 자극을 추정하는 작업을 말한다. 디코딩은 뉴론들끼리 어떻게 신호를 주고 받는 지를 이해함으로써 궁극적으로 뇌가 어떻게 정보처리를 하는 지 이해하는 기초적인 작업이다. 이 논문에서 우리는 3가지 뉴럴 디코딩 방법, 즉 빈도 디코딩, 시간 디코딩, 군집 디코딩 방법에 대해 설명하겠다. 빈도 디코딩은 자극에 대한 스파이크의 발화빈도 정보를 이용하여 자극을 복원하는 방법을 말한다. 역사적으로 가장 먼저 시도되었고 가장 간단한 디코딩 방법이다. 그러나 정수 개인 스파이크 개수로부터 빈도를 계산하는 과정에서 빈도자체가 불연속이고 양자화될 가능성이 높기 때문에 간단하고 정적인 자극이 아닌 경우 빈도 디코딩으로는 자극을 복원하기 어렵다는 한계를 가지고 있다. 시간 디코딩은 스파이크 발생 빈도가 아닌 개별 스파이크들의 발생시각을 이용한 디코딩 방법을 말하며 실제 빠르게 변화하는 자극의 경우 신경세포는 빈도 디코딩이 아니라 시간 디코딩을 통해 자극을 추정하는 것으로 이해되고 있다. 군집 디코딩은 단일 신경세포가 아닌 군집 신경세포로부터 자극을 복원하는 방법이다. 군집 디코딩은 단일 신경 세포 디코딩에 비해 신경 세포의 가변성에 따른 불확실성을 감소시킬 수 있고 서로 다른 자극의 특성을 동시에 표현할 수 있다는 장점을 갖는다. 이 논문에서는 먼저 세 가지 뉴럴디코딩 방법에 대해 소개하고 정보이론이 뉴럴디코딩에 어떻게 적용되는 지를 다룬 후 마지막으로 최근에 각광받고 있는 기계학습 방법에 의한 뉴럴 디코딩에 대해 다루도록 하겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.