• Title/Summary/Keyword: Quantitative phase microscopy

Search Result 34, Processing Time 0.028 seconds

A Study of the Crystal Structure of the Fine S-Phase Precipitate in Al-Cu-Mg Alloy by Electron Diffraction Experiments (전자회절실험에 의한 알루미늄 합금 (Al-Cu-Mg)의 미세 S-상 석출입자에 대한 결정구조 연구)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper it is reported that a comprehensive study of the crystal structure of the fine size S-phase ($Al_2CuMg$) precipitate in Al-Cu-Mg alloy by electron diffraction experiments. The experiments involve taking the selected area diffraction pattern for a S-phase particle, simulations of the pattern based on the kinematical diffraction theory and quantitative data collection from the zone axis diffraction patterns for the comparison with calculated diffraction intensity using both the kinematical and the dynamical diffraction theory. As a result, a good fitting model of the S-phase structure turns out to be the model reported early by X-ray methods (Perlitz & Westgren, 1943), not the new model determined by HRTEM methods (Radmilovic et al., 1999).

홀로그래픽 회절 토모그래피와 그 생물학적 응용

  • Gang, Pil-Seong;Choe, Won-Sik
    • Broadcasting and Media Magazine
    • /
    • v.18 no.3
    • /
    • pp.95-108
    • /
    • 2013
  • 디지털 홀로그래픽 현미경이나 정량적 위상 현미경(quantitative phase microscopy)과 같은 기존의 간섭현미경은 3차원 이미징 기술로 분류되는데, 이는 획득한 이미지의 복소장(complex field)을 계산을 통해 다른 깊이로 전파시킬 수 있기 때문이다. 그러나 엄밀한 의미에서는 하나의 복소장 이미지는 단지 2차원 맵이기 때문에 근본적으로는 샘플의 2차원 정보만을 가지고, 물체의 3차원 구조의 일부분을 측정하는 것에 지나지 않는다. 본 논문에서는 1969년에 Wolf가 제안한[1,2] 홀로그래픽 회절 토모그래피(Optical Diffraction Tomography: ODT)를 실험적으로 구현한 3차원 위상 현미경(Tomographic Phase Microscopy: TPM)을 소개하고자 한다. TPM은 샘플을 다양한 각도로 조명하여 서로 다른 입사각에 대해 복소장 이미지를 얻고, ODT를 통해서 샘플의 3차원 구조를 복원해내는 기술이다. 보다 구체적으로는 다양하고 독립적인 2차원 이미지들을 샘플의 3차원 푸리에 공간에 맵핑함으로써 샘플 단면의 흡수율과 굴절률을 복원할 수 있다. 굴절률은 분자 농도와 비례하기 때문에, 살아있는 세포에 대한 굴절률의 3차원 맵을 얻을 수 있으면 세포 내부의 분자 구성을 연구할 수 있고, 이를 통해 다양한 생의학적 응용을 연구할 수 있다.

Quantitative analysis of retained austenite in Nb added Fe-based alloy

  • Kwang Kyu Ko;Jin Ho Jang;Saurabh Tiwari;Hyo Ju Bae;Hyo Kyung Sung;Jung Gi Kim;Jae Bok Seol
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.5.1-5.10
    • /
    • 2022
  • The use of Pipelines for long-distance transportation of crude oil, natural gas and similar applications is increasing and has pivotal importance in recent times. High specific strength plays a crucial role in improving transport efficiency through increased pressure and improved laying efficiency through reduced diameter and weight of line pipes. TRIP-based high-strength and high-ductility alloys comprise a mixture of ferrite, bainite, and retained austenite that provide excellent mechanical properties such as dimensional stability, fatigue strength, and impact toughness. This study performs microstructure analysis using both Nital etching and LePera etching methods. At the time of Nital etching, it is difficult to distinctly observe second phase. However, using LePera etching conditions it is possible to distinctly measure the M/A phase and ferrite matrix. The fraction measurement was done using OM and SEM images which give similar results for the average volume fraction of the phases. Although it is possible to distinguish the M/A phase from the SEM image of the sample subjected to LePera etching. However, using Nital etching is nearly impossible. Nital etching is good at specific phase analysis than LePera etching when using SEM images.

Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy (주사탐침열파현미경을 이용한 1 차원 나노구조체의 정량적 열전도도 계측기법)

  • Park, Kyung Bae;Chung, Jae Hun;Hwang, Gwang Seok;Jung, Eui Han;Kwon, Oh Myoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.957-962
    • /
    • 2014
  • We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

7$\AA$ Phase in the Sancheong Kaolin : 7$\AA$-Halloysite or Kaolinite\ulcorner (산청 고령토중의 7$\AA$ 상에 대한 연구 : 7$\AA$-할로이사이트 또는 캐올리나이트\ulcorner)

  • 정기영;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.18-25
    • /
    • 1989
  • The X-ray diffraction and electron microscopy study of the kaolin sample from Sancheong area show that the halloysite occurs as hydrated 10$\AA$ form. It implies that the 7$\AA$ reflection and hk-line splitting in the X-ray diffractogram are ascribed to kaolinite. Kaolinite in Sancheong kaolin is of a disordered type. It tends to be enriched in the colored part of kaolin samples. Quantitative analyses show that kaolin contains 16-57% halloysite and 10-55%kaolinite.

  • PDF

Phase Imaging of Worn Surface of TiN Coating and Interpretation by Force Spectroscopy

  • Hyo Sok;Chizhik, S-A;I Luzinov
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.69-75
    • /
    • 2000
  • The paper compares topography, phase contrast and force spectroscopy in atomic force microscopy data for evaluating the microheterogeneity of surface layer. The worn surface of ion-plated TiN coating was measured using both a laboratory-built and a commercial AFM. The results of analysis revealed structural and micromechanical heterogeneity of the worn surfaces. We demonstrated that the phase image allows relatively qualitative estimation of elastic modulus of the sample surface. The tribolayer formed in the worn surface possessed much lower stiffness than the original coating. It is shown that the most stable phase imaging is provided with a stiff cantilever. In this case, phase contrast is well conditioned, first of all, by microheterogeneity of elastic properties of the investigated surfaces. In this study an attempt was also made to correlate the results of phase imaging with that of the farce spectroscopy. The joint analysis of information on the surface properties obtained by the phase imaging and quantitative data measured with the force spectroscopy methods allows a better understanding of the nature of the surface micromechanical heterogeneity.

  • PDF

Analysis of Twin in Mg Alloys Using Electron Backscatter Diffraction Technique

  • Lee, Jong Youn;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Electron backscatter diffraction (EBSD) is widely used for quantitative microstructural analysis of the crystallographic nature of variety of materials such as metals, minerals, and ceramics. EBSD can provide a wide range of information on materials including grain size, grain orientation, texture, and phase identity. In the case of metallic alloys, EBSD now has become an essential technique to analyze the texture, particularly when severe deformation is applied to the alloys. In addition, EBSD can be one of the very useful tools in identification of twin, particularly in Mg alloys. In Mg alloys different type of twin can occur depending on the c/a ratio and stacking fault energy on the twinning plane. Such an occurrence of different type of twin can be most effectively analyzed using EBSD technique. In this article, the recent development of Mg alloys and occurrence of twin in Mg are reviewed. Then, recently published example for identification of tension and compression twins in AZ31 and ZX31 is introduced to explain how EBSD can be used for identification of twin in Mg.

TEM Specimen Preparation Method of Gibbsite Powder for Quantitative Structure Analysis (정량 구조 분석을 위한 Gibbsite 분말의 TEM 시편 준비법)

  • Kim, Young-Min;Jeung, Jong-Man;Lee, Su-Jeong;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.311-317
    • /
    • 2002
  • There is great requirement on the TEM specimen preparation method with particle size selectivity as a prerequisite for the quantitative structure analysis on the materials such as gibbsite powder, which generally forms a large agglomerate and shows a variation of transition process depending on their sizes. In this experiment, we made an attempt to give a methodology for the TEM specimen preparation of powder with the size selectivity. After mixing 1 wt% gibbsite powder with ethanol solvent, gibbsite suspension was prepared by application of ball-milling and ultrasonification with addition of 0.25 vol% dispersion agent, Darvan C, which was diluted into distilled water by the ratio 1:19. Appling the static sedimentation method to gibbsite suspension after estimation of the sedimentation time by the measurement of accumulative concentration variation, we acquired TEM specimens with well-dispersed and size selected gibbsite particles in nm scale. Overall picture of each sample was taken by SEM and morphology of each dispersed particle was imaged by TEM. Raw and processed gibbsite powders were also examined by XRD to investigate whether they were suffered from phase change during the process or not.