• Title/Summary/Keyword: Quantitative parameters

Search Result 1,134, Processing Time 0.032 seconds

Prediction of Decompensation and Death in Advanced Chronic Liver Disease Using Deep Learning Analysis of Gadoxetic Acid-Enhanced MRI

  • Subin Heo;Seung Soo Lee;So Yeon Kim;Young-Suk Lim;Hyo Jung Park;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Bumwoo Park;Ji Sung Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1269-1280
    • /
    • 2022
  • Objective: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). Materials and Methods: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. Results: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). Conclusion: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.

Prevalence of Decreased Myocardial Blood Flow in Symptomatic Patients with Patent Coronary Stents: Insights from Low-Dose Dynamic CT Myocardial Perfusion Imaging

  • Yuehua Li;Mingyuan Yuan;Mengmeng Yu;Zhigang Lu;Chengxing Shen;Yining Wang;Bin Lu;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.621-630
    • /
    • 2019
  • Objective: To study the prevalence and clinical characteristics of decreased myocardial blood flow (MBF) quantified by dynamic computed tomography (CT) myocardial perfusion imaging (MPI) in symptomatic patients without in-stent restenosis. Materials and Methods: Thirty-seven (mean age, 71.3 ± 10 years; age range, 48-88 years; 31 males, 6 females) consecutive symptomatic patients with patent coronary stents and without obstructive de novo lesions were prospectively enrolled to undergo dynamic CT-MPI using a third-generation dual-source CT scanner. The shuttle-mode acquisition technique was used to image the complete left ventricle. A bolus of contrast media (50 mL; iopromide, 370 mg iodine/mL) was injected into the antecubital vein at a rate of 6 mL/s, followed by a 40-mL saline flush. The mean MBF value and other quantitative parameters were measured for each segment of both stented-vessel territories and reference territories. The MBFratio was defined as the ratio of the mean MBF value of the whole stent-vessel territory to that of the whole reference territory. An MBFratio of 0.85 was used as the cut-off value to distinguish hypoperfused from non-hypoperfused segments. Results: A total of 629 segments of 37 patients were ultimately included for analysis. The mean effective dose of dynamic CT-MPI was 3.1 ± 1.2 mSv (range, 1.7-6.3 mSv). The mean MBF of stent-vessel territories was decreased in 19 lesions and 81 segments. Compared to stent-vessel territories without hypoperfusion, the mean MBF and myocardial blood volume were markedly lower in hypoperfused stent-vessel territories (77.5 ± 16.6 mL/100 mL/min vs. 140.4 ± 24.1 mL/100 mL/min [p < 0.001] and 6.4 ± 3.7 mL/100 mL vs. 11.5 ± 4 mL/100 mL [p < 0.001, respectively]). Myocardial hypoperfusion in stentvessel territories was present in 48.6% (18/37) of patients. None of clinical parameters differed statistically significantly between hypoperfusion and non-hypoperfusion subgroups. Conclusion: Decreased MBF is commonly present in patients who are symptomatic after percutaneous coronary intervention, despite patent stents and can be detected by dynamic CT-MPI using a low radiation dose.

Myocardial Blood Flow Quantified by Low-Dose Dynamic CT Myocardial Perfusion Imaging Is Associated with Peak Troponin Level and Impaired Left Ventricle Function in Patients with ST-Elevated Myocardial Infarction

  • Jingwei Pan;Mingyuan Yuan;Mengmeng Yu;Yajie Gao;Chengxing Shen;Yining Wang;Bin Lu;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.709-718
    • /
    • 2019
  • Objective: To investigate the association of myocardial blood flow (MBF) quantified by dynamic computed tomography (CT) myocardial perfusion imaging (MPI) with troponin level and left ventricle (LV) function in patients with ST-segment elevated myocardial infarction (STEMI). Materials and Methods: Thirty-five STEMI patients who successfully had undergone reperfusion treatment within 1 week of their infarction were consecutively enrolled. All patients were referred for dynamic CT-MPI. Serial high-sensitivity troponin T (hs-TnT) levels and left ventricular ejection fraction (LVEF) measured by echocardiography were recorded. Twenty-six patients with 427 segments were included for analysis. Various quantitative parameters derived from dynamic CT-MPI were analyzed to determine if there was a correlation between hs-TnT levels and LVEF on admission and again at the 6-month mark. Results: The mean radiation dose for dynamic CT-MPI was 3.2 ± 1.1 mSv. Infarcted territories had significantly lower MBF (30.5 ± 7.4 mL/min/100 mL versus 73.4 ± 8.1 mL/min/100 mL, p < 0.001) and myocardial blood volume (MBV) (2.8 ± 0.9 mL/100 mL versus 4.2 ± 1.1 mL/100 mL, p = 0.044) compared with those of reference territories. MBF showed the best correlation with the level of peak hs-TnT (r = -0.682, p < 0.001), and MBV showed a moderate correlation with the level of peak hs-TnT (r = -0.437, p = 0.026); however, the other parameters did not show any significant correlation with hs-TnT levels. As for the association with LV function, only MBF was significantly correlated with LVEF at the time of admission (r = 0.469, p = 0.016) and at 6 months (r = 0.585, p = 0.001). Conclusion: MBF quantified by dynamic CT-MPI is significantly inversely correlated with the level of peak hs-TnT. In addition, patients with lower MBF tended to have impaired LV function at the time of their admission and at 6 months.

Study of 68Ga Labelled PET/CT Scan Parameters Optimization (68Ga 표지 PET/CT 검사의 최적화된 매개변수에 대한 연구)

  • In Suk Kwak;Hyuk Lee;Si Hwal Kim;Seung Cheol Moon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.111-127
    • /
    • 2023
  • Purpose: Gallium-68 (68Ga) is increasingly used in nuclear medicine imaging for various conditions such as lymphoma and neuroendocrine tumors by labeling tracers like Prostate Specific Membrane Antigen (PSMA) and DOTA-TOC. However, compared to Fluorine-18 (18F) used in conventional nuclear medicine imaging, 68Ga has lower spatial resolution and relatively higher Signal to Background Ratio (SBR). Therefore, this study aimed to investigate the optimized parameters and reconstruction methods for PET/CT imaging using the 68Ga radiotracer through model-based image evaluation. Materials and Methods: Based on clinical images of 68Ga-PSMA PET/CT, a NEMA/IEC 2008 PET phantom model was prepared with a Hot vs Background (H/B) ratio of 10:1. Images were acquired for 9 minutes in list mode using DMIDR (GE, Milwaukee WI, USA). Subsequently, reconstructions were performed for 1 to 8 minutes using OS-EM (Ordered Subset Expectation Maximization) + TOF (Time of Flight) + Sharp IR (VPFX-S), and BSREM (Block Sequential Regularized Expectation Maximization) + TOF + Sharp IR (QCFX-S-400), followed by comparative evaluation. Based on the previous experimental results, images were reconstructed for BSREM + TOF + Sharp IR / 2 minutes (QCFX-S-2min) with varying β-strength values from 100 to 700. The image quality was evaluated using AMIDE (freeware, Ver.1.0.1) and Advanced Workstation (GE, USA). Results: Images reconstructed with QCFX-S-400 showed relatively higher values for SNR (Signal to Noise Ratio), CNR (Contrast to Noise Ratio), count, RC (Recovery Coefficient), and SUV (Standardized Uptake Value) compared to VPFX-S. SNR, CNR, and SUV exhibited the highest values at 2 minutes/bed acquisition time. RC showed the highest values for a 10 mm sphere at 2 minutes/bed acquisition time. For small spheres of 10 mm and 13 mm, an inverse relationship between β-strength increase and count was observed. SNR and CNR peaked at β-strength 400 and then decreased, while SUV and RC exhibited a normal distribution based on sphere size for β-strength values of 400 and above. Conclusion: Based on the experiments, PET/CT imaging using the 68Ga radiotracer yielded the most favorable quantitative and qualitative results with a 2 minutes/bed acquisition time and BSREM reconstruction, particularly when applying β-strength 400. The application of BSREM can enhance accurate quantification and image quality in 68Ga PET/CT imaging, and an optimization process tailored to each institution's imaging objectives appears necessary.

Adaptation of Deep Learning Image Reconstruction for Pediatric Head CT: A Focus on the Image Quality (소아용 두부 컴퓨터단층촬영에서 딥러닝 영상 재구성 적용: 영상 품질에 대한 고찰)

  • Nim Lee;Hyun-Hae Cho;So Mi Lee;Sun Kyoung You
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.240-252
    • /
    • 2023
  • Purpose To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric patients. Materials and Methods We collected 126 pediatric head CT images, which were reconstructed using filtered back projection, iterative reconstruction using adaptive statistical iterative reconstruction (ASiR)-V, and all three levels of DLIR (TrueFidelity; GE Healthcare). Each image set group was divided into four subgroups according to the patients' ages. Clinical and dose-related data were reviewed. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and qualitative parameters, including noise, gray matter-white matter (GM-WM) differentiation, sharpness, artifact, acceptability, and unfamiliar texture change were evaluated and compared. Results The SNR and CNR of each level in each age group increased among strength levels of DLIR. High-level DLIR showed a significantly improved SNR and CNR (p < 0.05). Sequential reduction of noise, improvement of GM-WM differentiation, and improvement of sharpness was noted among strength levels of DLIR. Those of high-level DLIR showed a similar value as that with ASiR-V. Artifact and acceptability did not show a significant difference among the adapted levels of DLIR. Conclusion Adaptation of high-level DLIR for the pediatric head CT can significantly reduce image noise. Modification is needed while processing artifacts.

Yield Load Interpretation for Drilled Shaft Foundations by Hyperbolic Approximation (쌍곡선 근사에 의한 현장타설말뚝의 항복하중 판정)

  • Won, Sang-Yeon;Hwang, Seong-Il;Jo, Nam-Jun
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.79-86
    • /
    • 1996
  • This study develops a new method for interpreting the yield load from load tests on drilled shaft foundations ended on general soils, which is defined as a point where the maximum curvature on the hyperbolic-approximated load-settlement curve occurs. How ever, the point of maximum curvature is a variable depending on the units and scales of the load and settlement. Therefore, to obtain a unique maximum curvature point, both the load and settlement must be normalized by proper parameters, respectively, and be expressed on the same scaled arses(1:1). Normalization has been processed so that the yield load by the new interpretation is to be close to the average of yield loads interpreted by other methods investigated in this study. The quantitative comparison between the new criterion and other conventitonal methods is presented.

  • PDF

A Study on Forecasting Model of the Apartment Price Behavior in Seoul (서울시 아파트 가격 행태 예측 모델에 관한 연구)

  • Kwon, Hee-Chul;Yoo, Jung-Sang
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.175-182
    • /
    • 2013
  • In this paper, the simulation model of house price is presented on the basis of pricing mechanism between the demand and the supply of apartments in seoul. The algorithm of house price simulation model for calculating the rate of price over time includes feedback control theory. The feedback control theory consists of stock variable, flow variable, auxiliary variable and constant variable. We suggest that the future price of apartment is simulated using mutual interaction variables which are demand, supply, price and parameters among them. In this paper we considers three items which include the behavior of apartment price index, the size of demand and supply, and the forecasting of the apartment price in the future economic scenarios. The proposed price simulation model could be used in public needs for developing a house price regulation policy using financial and non-financial aids. And the quantitative simulation model is to be applied in practice with more specific real data and Powersim Software modeling tool.

Development of Optimal Evacuation Model using Civil Defense Evacuation Facilities Survey Data (민방위 대피시설 실태 분석을 통한 최적의 대피모형 개발에 관한 연구)

  • Yeo, Wookhyun;Park, Namhee;Kim, Taewhan;Koo, Wonyong
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • It is necessary to establish guidelines when we selecting the civil defense evacuation facilities through quantitative analysis by civil defense evacuation facilities volume. The purpose of this study is to evaluate according to population density and distribution of the capacity of evacuation facilities. The results of this study are as follows. First, it is necessary to consider the capacity of evacuation facilities in order to set up the exact districts of civil defense evacuation facilities. Second, basic data based on to compare the condition of civil defense evacuation facilities is produced by an analysis on evacuation status of the target region. Third, it is proved to consider topographical conditions which do not move the shortest distance. Fourth, in order to create a realistic model, it is necessary to consider the model set various parameters.

Amperometric Kinetics of Hydrogen Peroxide Biosensor Bound with Natural Rubber (천연고무로 결합된 과산화수소 정량 바이오센서의 전류법 속도론)

  • Rhyu, Keun-Bae;Yoon, Kil-Joong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.689-693
    • /
    • 2010
  • When natural rubber dissolved in toluene comes into use as a binder of carbon powder, the volatilization of solvent just after the construction of biosensor brought the mechanical robustness on the paste. This characteristic satisfied the pre-requisite condition for the practical use of carbon paste electrode and a biosensor for the determination of hydrogen peroxide was designed. In order to evaluate its electrochemical qualitative and quantitative behaviors, various electrochemical kinetic parameters of the electrode, e.g. the symmetry factor (${\alpha}$, 0.37), the exchange current density ($i_0$, $0.075mAcm^{-2}$), the capacitance of double layer ($C_d$, $9.7{\times}10^{-3}F$), the time constant (${\tau}_A$, 0.92 s), the maximum current ($i_{max}$, $5.92{\times}10^{-7}Acm^{-2}$), the Michaelis constant ($K_M$, $1.99{\times}10^{-3}M$) and others were investigated. Results show that natural rubber is a promising binder of carbon powder.

Cytotoxicity and Structure-activity Relationships of Naphthyridine Derivatives in Human Cervical Cancer, Leukemia, and Prostate Cancer

  • Hwang, Yu Jin;Chung, Mi Lyang;Sohn, Uy Dong;Im, Chaeuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.517-523
    • /
    • 2013
  • Naphthyridine compounds are important, because they exhibit various biological activities including anticancer, antimicrobial, and anti-inflammatory activity. Some naphthyridines have antimitotic effects or demonstrate anticancer activity by inhibiting topoisomerase II. These compounds have been investigated as potential anticancer agents, and several compounds are now part of clinical trials. A series of naphthyridine derivatives were evaluated for their in vitro cytotoxic activities against human cervical cancer (HeLa), leukemia (HL-60), and prostate cancer (PC-3) cell lines using an MTT assay. Some compounds (14, 15, and 16) were more potent than colchicine against all three human cancer cell lines and compound (16) demonstrated potency with $IC_{50}$ values of 0.7, 0.1, and $5.1{\mu}M$, respectively. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used for quantitative structure-activity relationship (QSAR) molecular modeling of these compounds. We obtained accurate and predictive three-dimensional QSAR (3D-QSAR) models as indicated by the high PLS parameters of the HeLa ($q^2$, 0.857; $r^2$, 0.984; $r^2\;_{pred}$, 0.966), HL-60 ($q^2$, 0.777; $q^2$, 0.937; $r^2\;_{pred}$, 0.913), and PC-3 ($q^2$, 0.702; $q^2$, 0.983; $r^2\;_{pred}$, 0.974) cell lines. The 3D-QSAR contour maps suggested that the C-1 NH and C-4 carbonyl group of the naphthyridine ring and the C-2 naphthyl ring were important for cytotoxicity in all three human cancer cell lines.