• Title/Summary/Keyword: Quantitative health objectives

Search Result 151, Processing Time 0.022 seconds

Burden of Disease Attributable to Water-related Diseases in Korea (수질관련 질환에 의한 한국인의 질병부담)

  • Hwang, Sun-Bin;Kim, Hyeong-Su;Yoon, Seok-Jun;Lee, Kun-Sei;Kim, Eun-Jung;Jo, Min-Woo;Oh, In-Hwan;Kim, Hyun-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.4
    • /
    • pp.250-257
    • /
    • 2011
  • Objectives: This study was aimed at re-assessing the environmental burden of disease attributable to waterrelated diseases using available local data from Korea. Methods: The general methods and the operational definitions for water, sanitation and hygiene applied to the study were based on an environmental burden of disease study conducted by WHO. Eleven water-related diseases were selected. The attributable fraction for diarrhea was calculated by assessing local exposure levels to drinking water, sanitation and hygiene according the scenario-based approach. The attributable fractions for the other ten diseases were derived from the results of the environmental burden of diseases study. The attributable DALYs were measured by using the attributable fractions and local health statistics. Results: The total environmental burden of disease attributable to water, sanitation and hygiene for Korea was 0.9210 DALY per 1000 capitals. Of the total burden of disease, the attributable burden of diarrhea was 0.8863 (96.1%), the attributable burden of malaria and malnutrition was 0.0236 and 0.0063 DALY per 1000 capitals, respectively. There was little burden of disease measured for other diseases. Conclusions: This study is meaningful in re-assessing the environmental burden of disease using available local exposure data and health statistics. Quantitative analysis of the environmental risk factors and a health impact assessment would be helpful to prioritize health policies or interventions in the future.

Health Vulnerability Assessment for PM10 in Busan (부산지역 미세먼지에 대한 건강 취약성 평가)

  • Lee, Won-Jung;Hwang, Mi-Kyoung;Kim, Yoo-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.5
    • /
    • pp.355-366
    • /
    • 2014
  • Objectives: This study seeks to evaluate the vulnerability assessment of the human health sector for $PM_{10}$, which is reflected in the regional characteristics and related disease mortality rates for $PM_{10}$ in Busan over the period of 2006-2010. Methods: According to the vulnerability concept suggested by the Intergovernmental Panel on Climate Change (IPCC), vulnerability to $PM_{10}$ is comprised of the categories of exposure, sensitivity, and adaptive capacity. The indexes of the exposure and sensitivity categories indicate positive effects, while the adaptive capacity index indicates a negative effect on vulnerability to $PM_{10}$. Variables of each category were standardized by the rescaling method, and each regional relative vulnerability was computed through the vulnerability index calculation formula. Results: The regions with a high exposure index are Jung-Gu (transportation region) and Saha-Gu (industrial region). Major factors determining the exposure index are the $PM_{10}$ concentration, days of $PM_{10}{\geq}50$, ${\mu}g/m^3$, and $PM_{10}$ emissions. The regions that show a high sensitivity index are urban and rural regions; these commonly have a high mortality rate for related disease and vulnerable populations. The regions that have a high adaptive capacity index are Jung-Gu, Gangseo-Gu, and Busanjin-Gu, all of which have a high level of economic/welfare/health care factors. The high-vulnerability synthesis of the exposure, sensitivity, and adaptive capacity indexes show that Dong-Gu and Seo-Gu have a risk for $PM_{10}$ potential effects and a low adaptive capacity. Conclusions: This study presents the vulnerability index to $PM_{10}$ through a relative comparison using quantitative evaluation to draw regional priorities. Therefore, it provides basic data to reflect environmental health influences in favor of an adaptive policy limiting damage to human health caused by vulnerability to $PM_{10}$.

Review of Indicators and Tools used to Assess Korean Medicine Infertility Treatment (한의 난임 치료에 활용되는 평가지표와 평가도구 사용 현황 조사 및 고찰)

  • Soo-Jin Lee;Dong-Il Kim;Su-Ji Choi
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.36 no.3
    • /
    • pp.173-195
    • /
    • 2023
  • Objectives: To investigate and analyze the assessment indicators and tools used in clinical practice to assess Korean medicine (KM) treatment for infertility, and to establish a basis for assessment tools to diagnose and assess infertility. Methods: Relevant studies published until March 2023 were extracted from Pubmed, Research Information Sharing Service, and National Digital Science Library databases. Results: Sixty-four studies comprising 4,105 patients were included. We investigated pregnancy outcomes, and assessed pregnancy- and childbirth-related factors, overall health, reproductive health, and mental health. Pregnancy result was most common primary outcome. Ongoing pregnancy, stillbirth, miscarriage, and ectopic pregnancy rates were suggested as indicators of pregnancy and childbirth-related assessment. Overall health was most commonly assessed with Likert and Visual analogue scale (VAS). Among reproductive health variables, menstrual history was most frequently assessed. Moreover, indicators such as reproductive function, sexual intercourse, and gynecological disease were assessed. The Infertility Stress Scale and the Fertility Quality of Life tool (FertiQoL) were used to assess mental health. Conclusions: Subjective scales and objective assessment tools, such as the Likert scale and blood tests/ultrasonography, respectively, are used to assess KM infertility treatment. Inconsistent assessment tools make quantitative analyses more challenging. The development of a standardized mental and physical function assessment questionnaire with confirmed reliability and validity ensure the effectiveness of KM infertility treatment, and promote future studies on infertility treatment.

A Meta-analysis of the Association between Blood Lead and Blood Pressure (혈중 납과 혈압의 연관성에 관한 메타분석)

  • Koh, Sang-Baek;Nam, Chung-Mo;Choi, Hong-Ryul;Cha, Bong-Suk;Park, Jong-Ku;Jee, Ho-Sung;Kim, Chun-Bae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.3
    • /
    • pp.262-268
    • /
    • 2001
  • Objectives : To integrate the results of studies which assess an association between blood lead and blood pressure. Methods : We surveyed the existing literature using a MEDLINE search with blood lead and blood pressure as key words, including reports published from January 1980 to December 2000. The criteria for quality evaluation were as follows: 1) the study subjects must have been workers exposed to lead, and 2) both blood pressure and blood lead must have been measured and presented with sufficient details so as to estimate or calculate the size of the association as a continuous variable. Among the 129 articles retrieved, 13 studies were selected for quantitative meta-analysis. Before the integration of each regression coefficient for the association between blood pressure and blood lead, a homogeneity test was conducted. Results : As the homogeneity of studies was rejected in a fixed effect model, we used the results in a random effect model. Our quantitative meta-analysis yielded weighted regression coefficients of blood lead associated with systolic blood pressure and diastolic blood pressure results of 0.0047 (95% confidence interval [CI]: -0.0061, 0.0155) and 0.0004 (95% CI: -0.0031, 0.0039), respectively. Conclusions : The published evidence suggested that there may be a weak positive association between blood lead and blood pressure, but the association is not significant.

  • PDF

Comparative Analysis between Direct-reading Meter of PID and GC-FID using the Active Type Air Sampler for VOCs Measurement (직독식 측정기 PID와 능동식 시료채취기에 의한 GC-FID 정량분석법의 VOCs 농도 비교 연구)

  • Yeo, Jin-Hee;Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.301-306
    • /
    • 2016
  • Objectives: Direct-reading instrument(Photoionization detectors, PID) and quantitative analysis using active type air sampling (Gas chromatography-flame ionization detector, GC-FID) were tested to evaluate their ability to detect volatile organic compounds(VOCs) in a semiconductor manufacturing plant. Methods: The organic compounds used were acetone and ethanol which are normally used as cleaning solutions in the semiconductor manufacturing. The evaluation was based on the preparation of test solutions of known acetone and ethanol concentration in a chamber($600{\times}600{\times}1150mm$). Samples were prepared that would be equivalent to 5~100 ppm for acetone and 10~ 200 ppm ethanol. GC-FID and PID were evaluated simultaneously. Quantitative analysis was performed after sampling and the direct-reading instrument was checked using real-time data logging. Results: Positive correlations between PID and GC-FID were found for acetone and ethanol at 0.04~2.4% for acetone(TLV: 500 ppm) and 0.1~8.3% for ethanol(TLV: 1000 ppm). When the sampling time was 15 min, concentration of test solution was the most similar between measurement methods. However, the longer the sampling time, the less similar the results. PID and GC-FID had similar exposure patterns. Conclusions: The results indicate that PID and GC-FID have similar exposure pattern and positive correlation for detection of acetone and ethanol. Therefore, PID can be used for exposure monitoring for VOCs in the semiconductor manufacturing industry. This study has significance in that it validates measuring occupational exposure using a portable device.

Toxicity Prediction using Three Quantitative Structure-activity Relationship (QSAR) Programs (TOPKAT®, Derek®, OECD toolbox) (TOPKAT®, Derek®, OECD toolbox를 활용한 화학물질 독성 예측 연구)

  • Lee, Jin Wuk;Park, Seonyeong;Jang, Seok-Won;Lee, Sanggyu;Moon, Sanga;Kim, Hyunji;Kim, Pilje;Yu, Seung Do;Seong, Chang Ho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.457-464
    • /
    • 2019
  • Objectives: Quantitative structure-activity relationship (QSAR) is one of the effective alternatives to animal testing, but its credibility in terms of toxicity prediction has been questionable. Thus, this work aims to evaluate its predictive capacity and find ways of improving its credibility. Methods: Using $TOPKAT^{(R)}$, OECD toolbox, and $Derek^{(R)}$, all of which have been applied world-wide in the research, industrial, and regulatory fields, an analysis of prediction credibility markers including accuracy (A), sensitivity (S), specificity (SP), false negative (FN), and false positive (FP) was conducted. Results: The multi-application of QSARs elevated the precision credibility relative to individual applications of QSARs. Moreover, we found that the type of chemical structure affects the credibility of markers significantly. Conclusions: The credibility of individual QSAR is insufficient for both the prediction of chemical toxicity and regulation of hazardous chemicals. Thus, to increase the credibility, multi-QSAR application, and compensation of the prediction deviation by chemical structure are required.

Factors affecting dental biofilm maturity assessed with Quantitative Light-induced Fluorescence-Digital in Korean older adults

  • Shin, Na-Ri;Choi, Jun-Seon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.351-362
    • /
    • 2019
  • Objectives: The study aimed to analyze the factors affecting the maturity of dental biofilm, which was assessed with quantitative light-induced fluorescence-digital(QLF-D), in a sample of Korean older adults. Methods: This cross-sectional study included 67 participants, aged 65 years and older. All participants completed a questionnaire and tests to measure their manual dexterity and handgrip strength, which are parameters that indicate hand function abilities. To evaluate dental biofilm maturity, 804 surfaces of six index teeth were imaged using QLF-D and then quantified as ${\Delta}R$ values. All data were collected from May 25, 2017 to April 30, 2018. The independent t-test, one-way analysis of variance, and step-wise multiple linear regression were performed to analyze the factors associated with the maturity of dental biofilm (${\Delta}R$). Results: The multivariate linear regression analysis revealed that the factor most strongly related to dental biofilm maturity(${\Delta}R$) was manual dexterity (${\beta}=-0.326$), followed by handgrip strength (${\beta}=-0.303$) and use of interdental cleaning devices (${\beta}=-0.283$) (p<0.05). Conclusions: Manual dexterity, handgrip strength, and use of interdental cleaning devices are factors that can predict dental biofilm maturity in adults aged 65 years or older. Therefore, the hand function of a patient should be evaluated first, before assessing the oral hygiene status of the patient or providing him/her with oral health education, and the dental hygienist should provide differentiated oral hygiene care depending on the patient's hand function ability. Finally, dental hygienists should help older adults to recognize the importance of auxiliary oral hygiene devices such as interdental brushes and keep motivating them to use the devices more frequently.

Evidence-Based Benefit-Risk Assessment of Medication (근거에 기반한 의약품의 유익성-위해성 평가)

  • Lee, Eui-Kyung
    • The Journal of Health Technology Assessment
    • /
    • v.1 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • Objectives: Balancing benefits and risks through the drug life cycle has been discussed for many decades. The objective of this study was to review the processes and tools currently proposed for benefit-risk assessment of medicinal drugs. It aimed to establish scientific and efficient drug safety management system based on the synthetic analysis of benefit-risk evidence. Methods: We conducted a review of exiting literatures published by regulatory agencies or initiatives. Not only quantitative methodologies but also qualitative method were compared to understand their key characteristics for the benefit and risk assessment of drugs. Results: Recently, benefit-risk assessments have more structured approaches to decision making as part of regulatory science. Regulatory agencies such as European Medicines Agency, FDA have prepared plans to apply benefit-risk assessment to regulatory decision making. Also many initiatives such as IMI (Innovative Medicine Initiative) have conducted research and published reports about benefit-risk assessment. For benefit-risk assessment, four kinds of methods are necessary. Frameworks such as BRAT (Benefit Risk Action Team) framework, PrOACT-URL provide guidance for the whole process of decision-making. Metrics are measurements of risk benefit. The estimation techniques are methods to synthesis and combine evidences from various sources. The utility survey techniques are necessary to explicit preferences of various outcome from stakeholders. Conclusion: There is the lack of widely accepted, validated model for benefit-risk assessment. Nor there is an agreement among academia, industry, and government on methods for the quantitative valuation. It is also limited by available evidence and underlying assumptions. Nevertheless, benefit-risk assessment is fundamental to improve transparency, consistency and predictability for decision making through the structured systematic approaches.

Spatial analysis of $PM_{10}$ and cardiovascular mortality in the Seoul metropolitan area

  • Lim, Yu-Ra;Bae, Hyun-Joo;Lim, Youn-Hee;Yu, Seungdo;Kim, Geun-Bae;Cho, Yong-Sung
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.5.1-5.7
    • /
    • 2014
  • Objectives Numerous studies have revealed the adverse health effects of acute and chronic exposure to particulate matter less than $10{\mu}m$ in aerodynamic diameter ($PM_{10}$). The aim of the present study was to examine the spatial distribution of $PM_{10}$ concentrations and cardiovascular mortality and to investigate the spatial correlation between $PM_{10}$ and cardiovascular mortality using spatial scan statistic (SaTScan) and a regression model. Methods From 2008 to 2010, the spatial distribution of $PM_{10}$ in the Seoul metropolitan area was examined via kriging. In addition, a group of cardiovascular mortality cases was analyzed using SaTScan-based cluster exploration. Geographically weighted regression (GWR) was applied to investigate the correlation between $PM_{10}$ concentrations and cardiovascular mortality. Results An examination of the regional distribution of the cardiovascular mortality was higher in provincial districts (gu) belonging to Incheon and the northern part of Gyeonggi-do than in other regions. In a comparison of $PM_{10}$ concentrations and mortality cluster (MC) regions, all those belonging to MC 1 and MC 2 were found to belong to particulate matter (PM) 1 and PM 2 with high concentrations of air pollutants. In addition, the GWR showed that $PM_{10}$ has a statistically significant relation to cardiovascular mortality. Conclusions To investigate the relation between air pollution and health impact, spatial analyses can be utilized based on kriging, cluster exploration, and GWR for a more systematic and quantitative analysis. It has been proven that cardiovascular mortality is spatially related to the concentration of $PM_{10}$.

Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

  • Kim, Kwang-Yon;Shin, Seong Eun;No, Kyoung Tai
    • Environmental Analysis Health and Toxicology
    • /
    • v.30 no.sup
    • /
    • pp.7.1-7.10
    • /
    • 2015
  • Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations.