• Title/Summary/Keyword: Quantitative fluorescent PCR

Search Result 33, Processing Time 0.017 seconds

Modulation of Pituitary Somatostatin Receptor Subtype (sst1-5) mRNA Levels by Growth Hormone (GH)-Releasing Hormone in Purified Somatotropes

  • Park, Seung-Joon;Park, Hee-Soon;Lee, Mi-Na;Sohn, Sook-Jin;Kim, Eun-Hee;Jung, Jee-Chang;Frohman, Lawrence A.;Kineman, Rhonda D.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • We have previously reported that expression of the somatostatin receptor subtypes, sst1-5, is differentially regulated by growth hormone (GH)-releasing hormone (GHRH) and forskolin (FSK), in vitro. GHRH binds to membrane receptors selectively located on pituitary somatotropes, activates adenylyl cyclase (AC) and increases sst1 and sst2 and decreases sst5 mRNA levels, without significantly altering the expression of sst3 and sst4. In contrast FSK directly activates AC in all pituitary cell types and increases sst1 and sst2 mRNA levels and decreases sst3, sst4 and sst5 expression. Two explanations could account for these differential effects: 1) GHRH inhibits sst3 and sst4 expression in somatotropes, but this inhibitory effect is masked by expression of these receptors in unresponsive pituitary cell types, and 2) FSK inhibits sst3 and sst4 expression levels in pituitary cell types other than somatotropes. To differentiate between these two possibilities, somatotropes were sequentially labeled with monkey anti-rat GH antiserum, biotinylated goat anti-human IgG, and streptavidin-PE and subsequently purified by fluorescent-activated cell sorting (FACS). The resultant cell population consisted of 95% somatotropes, as determined by GH immunohistochemistry using a primary GH antiserum different from that used for FACS sorting. Purified somatotropes were cultured for 3 days and treated for 4 h with vehicle, GHRH (10 nM) or FSK ($10{\mu}M$). Total RNA was isolated by column extraction and specific receptor mRNA levels were determined by semi-quantitative multiplex RT-PCR. Under basal conditions, the relative expression levels of the various somatostatin receptor subtypes were sst2>sst5>sst3=sst1> sst4. GHRH treatment increased sst1 and sst2 mRNA levels and decreased sst3, sst4 and sst5 mRNA levels in purified somatotropes, comparable to the effects of FSK on purified somatotropes and mixed pituitary cell cultures. Taken together, these results demonstrate that GHRH acutely modulates the expression of all somatostatin receptor subtypes within GH-producing cells and its actions are likely mediated by activation of AC.

Identification and analysis of microRNAs in Candida albicans (Candida albicans의 마이크로RNA 동정과 분석)

  • Cho, Jin-Hyun;Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1494-1499
    • /
    • 2017
  • Oral infection due to Candida albicans is a widely recognized and frequent cause of superficial infections of the oral mucosa (oral candidiasis). Although oral candidiasis is not a life-threatening fungemia, it can cause severe problems in individuals under certain conditions. MicroRNAs (miRNAs) are noncoding, small RNA molecules, which regulate the expression of other genes by inhibiting the translation of target mRNAs. The present study was designed to identify miRNAs in C. albicans and determine their possible roles in this organism. miRNA-sized small RNAs (msRNAs) were cloned in C. albicans by deep sequencing, and their secondary structures were analyzed. All the cloned msRNAs satisfied conditions required to qualify them as miRNAs. Bioinformatics analysis revealed that two of the most highly expressed C. albicans msRNAs, Ca-363 and Ca-2019, were located in the 3' untranslated region of the corticosteroid-binding protein 1 (CBP1) gene in a reverse orientation. miRNA mimics were transformed into C. albicans to investigate their RNA-inhibitory functions. RNA oligonucleotide-transformed C. albicans was then observed by fluorescent microscopy. Quantitative PCR analysis showed that these msRNAs did not inhibit CBP1 gene expression 4 hr and 8 hr after ectopic miRNA transformation. These results suggest that msRNAs in C. albicans possess an miRNA-triggered RNA interference gene-silencing function, which is distinct from that exhibited by other eukaryotic systems.

Protective effect of lycopene against cytokine-induced β-cell apoptosis in INS-1 cells (라이코펜이 사이토카인에 의해 유도된 베타세포 사멸에 미치는 효과 및 기전 연구)

  • Kim, Kyong;Jang, Se-Eun;Bae, Gong Deuk;Jun, Hee-Sook;Oh, Yoon Sin
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.498-506
    • /
    • 2018
  • Purpose: Lycopene, a carotenoid with anti-oxidant properties, occurs naturally in tomatoes and pink grapefruit. Although the beneficial effects of lycopene on various disorders have been established, little attention has been paid to the possible anti-diabetic effects of lycopene focusing on ${\beta}$-cells. Therefore, this study investigated the potential of lycopene to protect ${\beta}$-cells against apoptosis induced by a cytokine mixture. Methods: For toxicity experiments, the cells were treated with 0.1 ~ 10 nM of lycopene, and the cell viability in INS-1 cells (a rat ${\beta}$-cell line) was measured using a MTT assay. To induce cytokine toxicity, the cells were treated with a cytokine mixture (20 ng/mL of $TNF{\alpha}$ + 20 ng/mL of IL-$1{\beta}$) for 24 h, and the effects of lycopene (0.1 nM) on the cytokine toxicity were measured using the MTT assay. The expression levels of the apoptotic proteins were analyzed by Western blotting, and the level of intracellular reactive oxidative stress (ROS) was monitored using a DCFDA fluorescent probe. The intracellular ATP levels were determined using a luminescence kit, and mRNA expression of the genes coding for anti-oxidative stress response and mitochondrial function were analyzed by quantitative reverse-transcriptase PCR. Results: Exposure of INS-1 cells to 0.1 nM of lycopene increased the cell viability significantly, and protected the cells from cytokine-induced death. Lycopene upregulated the mRNA and protein expression of B-cell lymphoma-2 (Bcl-2) and reduced the expression of the Bcl-2 associated X (Bax) protein. Lycopene inhibited apoptotic signaling via a reduction of the ROS, and this effect correlated with the upregulation of anti-oxidative stress response genes, such as GCLC, NQO1, and HO-1. Lycopene increased the mRNA expression of mitochondrial function-related genes and increased the cellular ATP level. Conclusion: These results suggest that lycopene reduces the level of oxidative stress and improves the mitochondrial function, contributing to the prevention of cytokine-induced ${\beta}$-cell apoptosis. Therefore, lycopene could potentially serve as a preventive and therapeutic agent for the treatment of type 2 diabetes.