• Title/Summary/Keyword: Quantitative evaluation of image

Search Result 434, Processing Time 0.033 seconds

Development of Marine Debris Monitoring Methods Using Satellite and Drone Images (위성 및 드론 영상을 이용한 해안쓰레기 모니터링 기법 개발)

  • Kim, Heung-Min;Bak, Suho;Han, Jeong-ik;Ye, Geon Hui;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1109-1124
    • /
    • 2022
  • This study proposes a marine debris monitoring methods using satellite and drone multispectral images. A multi-layer perceptron (MLP) model was applied to detect marine debris using Sentinel-2 satellite image. And for the detection of marine debris using drone multispectral images, performance evaluation and comparison of U-Net, DeepLabv3+ (ResNet50) and DeepLabv3+ (Inceptionv3) among deep learning models were performed (mIoU 0.68). As a result of marine debris detection using satellite image, the F1-Score was 0.97. Marine debris detection using drone multispectral images was performed on vegetative debris and plastics. As a result of detection, when DeepLabv3+ (Inceptionv3) was used, the most model accuracy, mean intersection over union (mIoU), was 0.68. Vegetative debris showed an F1-Score of 0.93 and IoU of 0.86, while plastics showed low performance with an F1-Score of 0.5 and IoU of 0.33. However, the F1-Score of the spectral index applied to generate plastic mask images was 0.81, which was higher than the plastics detection performance of DeepLabv3+ (Inceptionv3), and it was confirmed that plastics monitoring using the spectral index was possible. The marine debris monitoring technique proposed in this study can be used to establish a plan for marine debris collection and treatment as well as to provide quantitative data on marine debris generation.

Correction of Receiver Gain using Noise′s Standard Deviation for Reconstruction of T$_1$/T$_2$ Maps (T$_1$/T$_2$ maps 의 재구성을 위해 잡음의 표준편차를 이용한 수신 증폭률 보정)

  • 김미나;김성은;신승애;정은기
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1999
  • T$_1$/T$_2$ weighted images are being used to give the characteristic contrast among the various tissues and the norma;/abnormal tissues. Abnormalities in tissues, in general, accompany the biochemical changes and eventually structural ones in which results in the change in T$_1$ and T$_2$ relaxation times of water protons. It has been suggested that the mapping of T$_1$/T$_2$ values may serve as a possible tool for the quantitative evaluation of the degree of abnormality. On reconstructing T$_1$/T$_2$ maps(or any other MR parametric map), only corresponding variables are to be varied, such as TE for T$_2$, TI or TR for T$_1$ and b-factor for diffusion images. But often the receiver gain is taken for the optimal usage of A/D converter, so that the set of the image data has different receiver gain. It must be corrected before any attempt to reconstruct the maps. Here we developed method of correcting receiver gain variation effect, using the standard deviation of noise on individual image. The resultant T$_1$ and T$_2$ values were very comparable to the other reported values.

  • PDF

NDVI Based on UAVs Mapping to Calculate the Damaged Areas of Chemical Accidents (화학물질사고 피해영역 산출을 위한 드론맵핑 기반의 정규식생지수 활용방안 연구)

  • Lim, Eontaek;Jung, Yonghan;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1837-1846
    • /
    • 2022
  • The annual increase in chemical accidents is causing damage to life and the environment due to the spread and residual of substances. Environmental damage investigation is more difficult to determine the geographical scope and timing than human damage investigation. Considering the reality that there is a lack of professional investigation personnel, it is urgent to develop an efficient quantitative evaluation method. In order to improve this situation, this paper conducted a chemical accidents investigation using unmanned aerial vehicles(UAV) equipped with various sensors. The damaged area was calculated by Ortho-image and strength of agreement was calculated using the normalized difference vegetation index image. As a result, the Cohen's Kappa coefficient was 0.649 (threshold 0.7). However, there is a limitation in that analysis has been performed based on the pixel of the normalized difference vegetation index. Therefore, there is a need for a chemical accident investigation plan that overcomes the limitations.

CComparative evaluation of the methods of producing planar image results by using Q-Metrix method of SPECT/CT in Lung Perfusion Scan (Lung Perfusion scan에서 SPECT-CT의 Q-Metrix방법과 평면영상 결과 산출방법에 대한 비교평가)

  • Ha, Tae Hwan;Lim, Jung Jin;Do, Yong Ho;Cho, Sung Wook;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.90-97
    • /
    • 2018
  • Purpose The lung segment ratio which is obtained through quantitative analyses of lung perfusion scan images is calculated to evaluate the lung function pre and post surgery. In this Study, the planar image production methods by using Q-Metrix (GE Healthcare, USA) program capable of not only quantitative analysis but also computation of the segment ratio after having performed SPECT/CT are comparatively evaluated. Materials and Methods Lung perfusion scan and SPECT/CT were performed on 50 lung cancer patients prior to surgery who visited our hospital from May 1, 2015 to September 13, 2016 by using Discovery 670(GE Healthcare, USA) equipment. AP(Anterior Posterior)method that uses planar image divided the frontal and rear images into three rectangular portions by means of ROI tool while PO(Posterior Oblique)method computed the segment ratio by dividing the right lobe into three parts and the left lobe into two parts on the oblique image. Segment ratio was computed by setting the ROI and VOI in the CT image by using Q-Metrix program and statistically analysis was performed with SPSS Ver. 23. Results Regarding the correlation concordance rate of Q-Metrix and AP methods, RUL(Right upper lobe), RML(Right middle lobe) and RLL(Right lower lobe) were 0.224, 0.035 and 0.447. LUL(Left upper lobe) and LLL(Left lower lobe) were found to be 0.643 and 0.456, respectively. In the PO method, the right lobe were 0.663, 0.623 and 0.702, respectively, while the left lobe were 0.754 and 0.823. When comparison was made by using the Paired sample T-test, Right lobe were $11.6{\pm}4.5$, $26.9{\pm}6.2$ and $17.8{\pm}4.2$, respectively in the AP method. Left lobe were $28.4{\pm}4.8$ and $15.4{\pm}5.6$. The right lobe of PO had values of $17.4{\pm}5.0$, $10.5{\pm}3.6$ and $27.3{\pm}6.0$, while the left lobe had values of $21.6{\pm}4.8$ and $23.1{\pm}6.6$, thereby having statistically significant difference in comparison to the Q-Metrix method for each of the lobes (P<0.05). However, there was no statistically significant difference in Right middle lobe (P>0.05). Conclusion The AP method showed low concordance rate in correlation with the Q-Metrix method. However, PO method displayed high concordance rate overall. although AP method had significant differences in all lobes, there was no significant difference in Right middle lobe of PO method. Therefore, at the time of production of lung perfusion scan results, utilization of Q-Metrix method of SPECT/CT would be useful in computation of accurate resultant values. Moreover, it is deemed possible to expect obtain more practical sectional computation result values by using PO method at the time of planar image acquisition.

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

Development of Multi-Camera based Mobile Mapping System for HD Map Production (정밀지도 구축을 위한 다중카메라기반 모바일매핑시스템 개발)

  • Hong, Ju Seok;Shin, Jin Soo;Shin, Dae Man
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.587-598
    • /
    • 2021
  • This study aims to develop a multi-camera based MMS (Mobile Mapping System) technology for building a HD (High Definition) map for autonomous driving and for quick update. To replace expensive lidar sensors and reduce long processing times, we intend to develop a low-cost and efficient MMS by applying multiple cameras and real-time data pre-processing. To this end, multi-camera storage technology development, multi-camera time synchronization technology development, and MMS prototype development were performed. We developed a storage module for real-time JPG compression of high-speed images acquired from multiple cameras, and developed an event signal and GNSS (Global Navigation Satellite System) time server-based synchronization method to record the exposure time multiple images taken in real time. And based on the requirements of each sector, MMS was designed and prototypes were produced. Finally, to verify the performance of the manufactured multi-camera-based MMS, data were acquired from an actual 1,000 km road and quantitative evaluation was performed. As a result of the evaluation, the time synchronization performance was less than 1/1000 second, and the position accuracy of the point cloud obtained through SFM (Structure from Motion) image processing was around 5 cm. Through the evaluation results, it was found that the multi-camera based MMS technology developed in this study showed the performance that satisfies the criteria for building a HD map.

Computer programme to assess mandibular cortex morphology in cases of medication-related osteonecrosis of the jaw with osteoporosis or bone metastases

  • Ogura, Ichiro;Kobayashi, Eizaburo;Nakahara, Ken;Haga-Tsujimura, Maiko;Igarashi, Kensuke;Katsumata, Akitoshi
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the morphology of the mandibular cortex in cases of medication-related osteonecrosis of the jaw (MRONJ) in patients with osteoporosis or bone metastases using a computer programme. Materials and Methods: Fifty-four patients with MRONJ (35 with osteoporosis and 19 with bone metastases) were examined using panoramic radiography. The morphology of the mandibular cortex was evaluated using a computer programme that scanned the mandibular inferior cortex and automatically assessed the mandibular cortical index (MCI) according to the thickness and roughness of the mandibular cortex, as follows: normal (class 1), mildly to moderately eroded (class 2), or severely eroded (class 3). The MCI classifications of MRONJ patients with osteoporosis or bone metastases were evaluated with the Pearson chi-square test. In these analyses, a 5% significance level was used. Results: The MCI of MRONJ patients with osteoporosis(class 1: 6, class 2: 15, class 3: 14) tended to be higher than that of patients with bone metastases(class 1: 14, class 2: 5, class 3: 0)(P=0.000). Conclusion: The use of a computer programme to assess mandibular cortex morphology may be an effective technique for the objective and quantitative evaluation of the MCI in MRONJ patients with osteoporosis or bone metastases.

Three-dimensional CT based Quantitative Assessment of Normal and Dysplasia Acetabulum (정상 및 이형성 비구의 고해상 CT를 이용한 정량적 분석)

  • An, Eun-Soo;Lee, Soon-Hyuck;Park, Sang-Won;Park, Jong-Hoon;Suh, Dong-Hun;Noh, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.126-131
    • /
    • 2009
  • Acetabular dysplasia is a condition defined by inadequate development of an individual's acetabulum. Individual diversity of the symptoms in this disease needs safe and accurate preoperative planning. Technologies that utilize multidimensional image information are thus important. The assessment method by Janzen et al. was suggested a coefficient method in evaluation of acetabular dysplasia. In this study, we applied it, using a three-dimensional computed tomography (3D CT) on the koreans. 19 cases of the normal hips and 4 cases of the acetabular dysplasia were investigated to evaluate the proved method; 3D CT was used to define the geometric center of the femoral head and to measure center edge angles at $10^{\circ}$ rotational increments around the acetabular rim. Mean and standard deviation in CEAs (Center Edge Angle) of normal 19 hips at $10^{\circ}$ rotational increments from anterior to posterior rim were determined, and termed as a 'normal curve'. Then this normal values were compared with the CEA data measured from 4 cases of acetabular dysplasia patiens. Quantative comparison of the CEA values between the normal cases and dysplasia cases was successfully demonstrated, and thus, we claim that this simple CT method of assessing acetabular dysplasia can be well applicable to diagnosis, quantification and surgical planning for adult acetabular dysplasia patients.

A Study on Tactile Visuality Using Sandpapers (연마지를 이용한 촉각적 시각에 관한 연구)

  • Lee, Eun-Suk;Kim, Ji-Sun;Oh, Han-Byeol;Baek, Jin-Young;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1424-1430
    • /
    • 2017
  • Human senses have been studied widely. Many studied are being actively conducted to analyze correlations between two or more different senses. Among them, research on tactile visuality where a subject can indirectly experience visual sensation through tactile elements is also progressing in various fields. In this study, we analyzed color information by having subjects perceive sandpapers with different roughness through tactile sense, then having them choose a color that is reminiscent of the tactile sensation. Unlike existing tactile-visuality studies allowing the perception of indirect visual sense by using tactile sense, this study shows that it is possible to analyze with quantitative value by representing visual image perceived by tactile sense as a color. This study will contribute to emotional evaluation research that combines two or more of the senses felt by humans, and especially is considered to be useful as basic data when conducting research about tactile visuality or auditory tactile sense.