• Title/Summary/Keyword: Quantitative evaluation of image

Search Result 433, Processing Time 0.04 seconds

The Evaluation of Clinical Usefulness on Application of Myocardial Extract in Quantitative Perfusion SPECT (QPS 프로그램에서 Myocardial extract 적용에 따른 임상적 유용성 평가)

  • Yun, Jong-Jun;Lim, Yeong-Hyeon;Lee, Mu-Seok;Song, Hyeon-Seok;Jeong, Ji-Uk;Park, Se-Yun;Kim, Jae-Hwan;Kim, Jeong-Uk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.88-93
    • /
    • 2011
  • Purpose: As to analytical method of data, the AutoQUANT software in which it is used quantitative rating of the myocardial perfusion SPECT are reported that there is a difference. Therefore the measured value error of the mutual program is expected to be generated even if the quantitative analysis is made data of the same patient. The purpose of this study is to offer the comparative analysis of myocardial extract method in Quantitative Perfusion SPECT. Materials and methods: We analyzed the 51 patients who were examined by Tc-99m MIBI gated myocardial SPECT in nuclear medicine department of Pusan National University Hospital from June to December 2010(34 men, 17 women, mean age $66.5{\pm}9.9$). We acquired the extracted image in myocardial extract protocol. QPS program that uses the AutoQUANT software measured TID(Transient Ischemic Dilation), ESD(Extent of Stress Defect), SSS(Summed Stress Score). Then analyzed the results. Results: The correlation of appyling myocardial extract is TID(r=0.98), ESD(r=0.99), SSS(r=0.99). In the 95% confidence limit, there was no satistically significant difference(TID p=0.78, ESD p=0.31, SSS p=0.19). After blinding test with a physician for making a qualitative analysis, there was no difference. Conclusion: Quantitative indices in QPS program showed good correlation and the results showed no statistically signigicant difference. The variance between method was small. therefore, the functional parameters by each method can be used interchangeably. Also, we expect patient's satisfaction.

  • PDF

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

Evaluation of Image Quality using SE-EPI and SSH-TSE Techniques in MRDWI (자기공명확산강조영상에서 SE-EPI 와 SSH-TSE 기법을 이용한 영상의 질 평가)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.991-998
    • /
    • 2021
  • The purpose of this study is to investigate the image quality of the SE-EPI and SSH-TSE technique for MR DWI. Datum were analyzed for 35 PACS transmission datum(Normal part: 12 males, 13 females, Cerebral Infarction: 10(5males and 5females), and average age 68±7.32), randomly selected patients who underwent MRDWI tests. The equipment used was Ingenia CX 3.0T, SSH_TSE and SE-EPI pulse sequence and 32 Ch. head coil were used for data acquisition. Image evaluation was performed on the paired t-test and Wilcoxon tests, and was considered significant when the p value was 0.05 or less. As a result of quantitative analysis of SNR for DWI images, the mean and standard deviation values of 4 parts (WM, GM, BG, Cerebellum) in ADC (s/mm2), Diffusion b=0, 1000 images were higher in SE-EPI techniques(ADC: 120.50 ± 40, b=0: 54.50 ± 35.91, b=1000: 91.61 ± 36.63) than in SSH-TSE techniques(ADC: 99.69 ± 31.10, b=0: 43.52 ± 25.00 , b=1000: 60.74 ± 24.85)(p<0.05). The CNR values for GM-WM, BG-WM sites were also higher in SE-EPI technique (ADC: 116.08 ± 43.30, b=0:27.23 ± 09.10, b=1000: 78.50 ± 16.56) than in SSH-TSE(ADC: 101.08 ± 36.81, b=0: 23.96 ± 07.79 , b=1000: 74.30 ± 14.22). As a visual evaluation of observers, ghost artifact, magnetic susceptibility artifacts and overall image quality for SE-TSE and SSH-TSE all yielded high results from SSH-TSE techniques(ADC:3.6 ± 0.1, 2.8 ± 0.2, b=0: 4.3 ± 0.3, 3.4 ± 0.1 b=1000: 4.3 ± 0.2, 3.5 ± 0.2, p=0.000). In conclusion, the SE-EPI technique obtained an superiority in SNR and CNR measurements using SSH-TSE, SE-EPI. In the qualitative analysis, the SSH-TSE pulse sequence was obtained a high result according to the pulse sequence characteristics.

Development and Evaluation of an Indirect Illumination for Tongue Image Acquisition (설 영상 획득을 위한 간접 조명 구현 및 평가)

  • Jung, Chang Jin;Kim, Keun Ho;Jang, Jun-Su;Jeon, Young Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.221-228
    • /
    • 2014
  • The color and shape of the tongue reflect the physiological and clinico-pathological condition of the body. Recently, various tongue image acquisition devices have been developed for accurate diagnosis based on quantitative and objective tongue features. Since a color information is essential for tongue diagnosis, the performance of an illuminator is very important for the tongue image acquisition device. In this study, we developed an indirect illumination, which is possible to improve a homogeneity of light intensities on the tongue surface, and evaluated its performances. In order to realize the indirect illumination (II), a semi-ellipsoidal solid structure (SESS) for the light reflex was located in the system, and two high-brightness white LEDs were placed for illuminating the areas under frontal camera in the SESS. The tongue surface was illuminated by reflected light from the SESS. The light homogeneity induced by three different illuminations including the II was evaluated by calculating coefficient of variation (CV) of illuminance of five regions. The II showed less than 0.01 of CV and the direct illumination (DI) and the direct illumination with a light diffusion plate (DILDP) showed 0.16 and 0.13, respectively. The reflexed pixel ratios of tongue phantom images show 5.76%, 4.22%, 1.79% for the DI, the DILDP and the II, respectively. The homogeneity of a tongue phantom was evaluated by calculating CV of mean pixel values of six different tongue regions, and showed less than 0.06 in the II. If the II technique apply to tongue diagnosis system, it is expected to improve diagnostic accuracy in clinic.

Quantitative Analysis of Effects for Quality Control on Medical Primary Class LCD Display Devices Based on AAPM TG18 Report (AAPM TG18에 의한 진단용 LCD 디스플레이 장치 정도관리 효과의 정량적 분석)

  • Jung Hai-Jo;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2006
  • The image display is an Important component of PACS and of medical digital imaging chain. Displayed image qualify is affected by the physical characteristics of display device, appropriate clinical settings and calibrations, and ambient lighting conditions. The performance of display systems is continuously degraded over time due to luminance deterioration and changes of clinical setting parameters. A routine QC is recommended because the performance of display systems is continuously degraded over time. Ten flat panel monochrome LCD display devices were included in the evaluation of the QC effect. The effect of QC on primary class LCD medical display devices for selected QC tests was evaluated by comparing the performances, luminance response, luminance dependencies, display resolution and display chromaticity in this study, of before and after the calibration procedures. The effects of the QC are significant to luminance response and luminance spatial dependencies test and the other side, are slight to the display resolution and display chromaticity test. A routine QC of display device is essential for the consistency of medical image display and presentation. The study of the QC effects of display devices will play an important role in practical QC procedures of display devices.

  • PDF

Evaluation of quantitative on T-spine exhalation technique and T-spine breathing technique of natural breathing (T-spine exhalation technique과 자연스런 호흡 상태에서 촬영하는 T-spine breathing technique의 정량적 평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Min, Jung-Whan;Son, Jin-Hyun;Kim, Ki-Won;Jung, Jae-Hong;Jeong, Hoi-Woun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4429-4436
    • /
    • 2013
  • Measurements of CNR(Contrast to Noise Ratio) and SNR(Signal to Noise Ratio) of T-spine breathing technique (TBT) using spontaneous breathing and T-spine exhalation technique (TET) with full exhalation were carried out, and with which the more appropriate method was suggested. Both TBT and TET were examined in a sample of fifty-three patients who visit to our hospital for spinal disease from June 2012 to November 2012. All images were evaluated with CNR measured from the differences between the mean pixels and contrast density as setting ROI of spinous process, pedicle, vertebral body, intervertebral foramen, and intervertebral disk using Image J. SNR was measured with the mean pixels and the standard deviation as setting ROI of vertebral body using Image J. In CNR comparison and SNR comparison of TET and TBT, TBT was indicated as excellent in ROI of pedicle, vertebral body, intervertebral foramen and intervertebral disk, and statistical analysis were significant(p<.01). As TBT indicated excellent images compared to the existing T-spine lateral radiography, T-spine lateral radiography would be reestablished and significant as applying to various medical institutions.

Development of Cloud-Based Medical Image Labeling System and It's Quantitative Analysis of Sarcopenia (클라우드기반 의료영상 라벨링 시스템 개발 및 근감소증 정량 분석)

  • Lee, Chung-Sub;Lim, Dong-Wook;Kim, Ji-Eon;Noh, Si-Hyeong;Yu, Yeong-Ju;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.233-240
    • /
    • 2022
  • Most of the recent AI researches has focused on developing AI models. However, recently, artificial intelligence research has gradually changed from model-centric to data-centric, and the importance of learning data is getting a lot of attention based on this trend. However, it takes a lot of time and effort because the preparation of learning data takes up a significant part of the entire process, and the generation of labeling data also differs depending on the purpose of development. Therefore, it is need to develop a tool with various labeling functions to solve the existing unmetneeds. In this paper, we describe a labeling system for creating precise and fast labeling data of medical images. To implement this, a semi-automatic method using Back Projection, Grabcut techniques and an automatic method predicted through a machine learning model were implemented. We not only showed the advantage of running time for the generation of labeling data of the proposed system, but also showed superiority through comparative evaluation of accuracy. In addition, by analyzing the image data set of about 1,000 patients, meaningful diagnostic indexes were presented for men and women in the diagnosis of sarcopenia.

Comparison of Metal Artifact Reduction Algorithms in Patients with Hip Prostheses: Virtual Monoenergetic Images vs. Orthopedic Metal Artifact Reduction (고관절 인공치환술 환자에서 금속 인공물 감소 방법의 비교: 가상 단일에너지영상 대 금속 인공물 감소기법)

  • Hye Jin Yoo;Sung Hwan Hong;Ja-Young Choi;Hee Dong Chae
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1286-1297
    • /
    • 2022
  • Purpose To assess the usefulness of various metal artifact reduction (MAR) methods in patients with hip prostheses. Materials and Methods This retrospective study included 47 consecutive patients who underwent hip arthroplasty and dual-energy CT. Conventional polyenergetic image (CI), orthopedic-MAR (OMAR), and virtual monoenergetic image (VMI, 50-200 keV) were tested for MAR. Quantitative analysis was performed in seven regions around the prostheses. Qualitative assessments included evaluation of the degree of artifacts and the presence of secondary artifacts. Results The lowest amount of image noise was observed in the O-MAR, followed by the VMI. O-MAR also showed the lowest artifact index, followed by high-keV VMI in the range of 120-200 keV (soft tissue) or 200 keV (bone). O-MAR had the highest contrast-to-noise ratio (CNR) in regions with severe hypodense artifacts, while VMI had the highest CNR in other regions, including the periprosthetic bone. On assessment of the CI of pelvic soft tissues, VMI showed a higher structural similarity than O-MAR. Upon qualitative analysis, metal artifacts were significantly reduced in O-MAR, followed by that in VMI, while secondary artifacts were the most frequently found in the O-MAR (p < 0.001). Conclusion O-MAR is the best technique for severe MAR, but it can generate secondary artifacts. VMI at high keV can be advantageous for evaluating periprosthetic bone.

Usefulness of Median Modified Wiener Filter Algorithm for Noise Reduction in Liver Cirrhosis Ultrasound Image (간경변 초음파 영상에서의 노이즈 제거를 위한 Median Modified Wiener Filter 알고리즘의 유용성)

  • Seung-Yeon Kim;Soo-Min Kang;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.911-917
    • /
    • 2023
  • The method of observing nodular changes on the liver surface using clinical ultrasonography is useful for diagnosing cirrhosis. However, the speckle noise that inevitably occurs in ultrasound images makes it difficult to identify changes in the liver surface and echo patterns, which has a negative impact on the diagnosis of cirrhosis. The purpose of this study is to model the median modified Wiener filter (MMWF), which can efficiently reduce noise in cirrhotic ultrasound images, and confirm its applicability. Ultrasound images were acquired using an ACR phantom and an actual cirrhotic patient, and the proposed MMWF algorithm and conventional noise reduction algorithm were applied to each image. Coefficient of variation (COV) and edge rise distance (ERD) were used as quantitative image quality evaluation factors for the acquired ultrasound images. We confirmed that the MMWF algorithm improved both COV and ERD values compared to the conventional noise reduction algorithm in both ACR phantom and real ultrasound images of cirrhotic patients. In conclusion, the proposed MMWF algorithm is expected to contribute to improving the diagnosis rate of cirrhosis patients by reducing the noise level and improving spatial resolution at the same time.

Development of Marine Debris Monitoring Methods Using Satellite and Drone Images (위성 및 드론 영상을 이용한 해안쓰레기 모니터링 기법 개발)

  • Kim, Heung-Min;Bak, Suho;Han, Jeong-ik;Ye, Geon Hui;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1109-1124
    • /
    • 2022
  • This study proposes a marine debris monitoring methods using satellite and drone multispectral images. A multi-layer perceptron (MLP) model was applied to detect marine debris using Sentinel-2 satellite image. And for the detection of marine debris using drone multispectral images, performance evaluation and comparison of U-Net, DeepLabv3+ (ResNet50) and DeepLabv3+ (Inceptionv3) among deep learning models were performed (mIoU 0.68). As a result of marine debris detection using satellite image, the F1-Score was 0.97. Marine debris detection using drone multispectral images was performed on vegetative debris and plastics. As a result of detection, when DeepLabv3+ (Inceptionv3) was used, the most model accuracy, mean intersection over union (mIoU), was 0.68. Vegetative debris showed an F1-Score of 0.93 and IoU of 0.86, while plastics showed low performance with an F1-Score of 0.5 and IoU of 0.33. However, the F1-Score of the spectral index applied to generate plastic mask images was 0.81, which was higher than the plastics detection performance of DeepLabv3+ (Inceptionv3), and it was confirmed that plastics monitoring using the spectral index was possible. The marine debris monitoring technique proposed in this study can be used to establish a plan for marine debris collection and treatment as well as to provide quantitative data on marine debris generation.