Browse > Article
http://dx.doi.org/10.7742/jksr.2021.15.7.991

Evaluation of Image Quality using SE-EPI and SSH-TSE Techniques in MRDWI  

Goo, Eun-Hoe (Department of Radiological Science, Cheongju University)
Publication Information
Journal of the Korean Society of Radiology / v.15, no.7, 2021 , pp. 991-998 More about this Journal
Abstract
The purpose of this study is to investigate the image quality of the SE-EPI and SSH-TSE technique for MR DWI. Datum were analyzed for 35 PACS transmission datum(Normal part: 12 males, 13 females, Cerebral Infarction: 10(5males and 5females), and average age 68±7.32), randomly selected patients who underwent MRDWI tests. The equipment used was Ingenia CX 3.0T, SSH_TSE and SE-EPI pulse sequence and 32 Ch. head coil were used for data acquisition. Image evaluation was performed on the paired t-test and Wilcoxon tests, and was considered significant when the p value was 0.05 or less. As a result of quantitative analysis of SNR for DWI images, the mean and standard deviation values of 4 parts (WM, GM, BG, Cerebellum) in ADC (s/mm2), Diffusion b=0, 1000 images were higher in SE-EPI techniques(ADC: 120.50 ± 40, b=0: 54.50 ± 35.91, b=1000: 91.61 ± 36.63) than in SSH-TSE techniques(ADC: 99.69 ± 31.10, b=0: 43.52 ± 25.00 , b=1000: 60.74 ± 24.85)(p<0.05). The CNR values for GM-WM, BG-WM sites were also higher in SE-EPI technique (ADC: 116.08 ± 43.30, b=0:27.23 ± 09.10, b=1000: 78.50 ± 16.56) than in SSH-TSE(ADC: 101.08 ± 36.81, b=0: 23.96 ± 07.79 , b=1000: 74.30 ± 14.22). As a visual evaluation of observers, ghost artifact, magnetic susceptibility artifacts and overall image quality for SE-TSE and SSH-TSE all yielded high results from SSH-TSE techniques(ADC:3.6 ± 0.1, 2.8 ± 0.2, b=0: 4.3 ± 0.3, 3.4 ± 0.1 b=1000: 4.3 ± 0.2, 3.5 ± 0.2, p=0.000). In conclusion, the SE-EPI technique obtained an superiority in SNR and CNR measurements using SSH-TSE, SE-EPI. In the qualitative analysis, the SSH-TSE pulse sequence was obtained a high result according to the pulse sequence characteristics.
Keywords
MRDWI; SSH-TSE; Spin Echo-EPI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Schuierer, P. Reimer, T. Allkemper, P. E. Peters, "Fast and ultra-fast MRI of the brain", Radiologe, Vol. 35, No. 12, pp. 894-901, 1995.
2 Angela Albi, Antonio Meola, Fan Zhang, Pegah Kahali, Laura Rigolo, Chantal M W Tax, Pelin Aksit Ciris, Walid I Essayed, Prashin Unadkat, Isaiah Norton, Yogesh Rathi, Olutayo Olubiyi, Alexandra J Golby, Lauren J O'Donnell, "Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects", Journal of Neuroimaging, Vol. 28, No. 2, pp. 173-182, 2018. https://doi.org/10.1111/jon.12485   DOI
3 A Y Oner, H Celik, T Tali, S Akpek, N Tokgoz, "Thin-section diffusion-weighted magnetic resonance imaging of the brain with parallel imaging", Acta Radiologica, Vol. 48, No. 4, pp. 456-463, 2007. http://dx.doi.org/10.1080/02841850701297506   DOI
4 J. W. Casselman, "The skull base: tumoral lesions", European Radiology, Vol. 15, No. 3, pp. 534-542, 2005. https://doi.org/10.1007/s00330-004-2532-9   DOI
5 G. Widmann, B. Henninger, C. Kremser, W. Jaschke, "MRI Sequences in Head & Neck Radiology - State of the Art", RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin, Vol. 189, No. 5, pp. 413-422, 2017. http://dx.doi.org/10.1055/s-0043-103280   DOI
6 S. C. Partridge, N. Nissan, H. Rahbar, A. E. Kitsch, E. E. Sigmund, "Diffusion-weighted breast MRI: Clinical applications and emerging techniques", Journal of Magnetic Resonance Imaging, Vol. 45, No. 2, pp. 337-355, 2017. http://dx.doi.org/10.1002/jmri.25479   DOI
7 M. Schlamann, "Diffusionsgewichtung in der Neuroradiologie", Radiologe, Vol. 51, No. 3, pp. 180-185, 2011. http://dx.doi.org/10.1007/s00117-010-2058-x   DOI
8 A. Nozaki, "Single shot fast spin echo (SSFSE)", Nihon Rinsho, Vol. 56, No. 11, pp. 2792-2797, 1998.
9 Andrea Romano, Alessandro Bozzao, Michela Bonamini, Fabrizio Fasoli, Michele Ferrante, Roberto Floris, Claudio Colonnese, Luigi Maria Fantozzi, "Diffusion-weighted MR Imaging: clinical applications in neuroradiology", La Radiologia Medica, Vol. 106, No. 5-6, pp. 521-548, 2003.
10 Soan T. M. Duong, Son L. Phung, Abdesselam Bouzerdoum, Mark M. Schira, "An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images", Journal of Magnetic Resonance Imaging, Vol. 71, pp. 1-10, 2020. https://doi.org/10.1016/j.mri.2020.04.004   DOI
11 Jessica A McKay, Steen Moeller, Lei Zhang, Edward J Auerbach, Michael T Nelson, Patrick J Bolan, "Nyquist ghost correction of breast diffusion weighted imaging using referenceless methods", Magnetic Resonance in Medicine, Vol. 81, No. 4, pp. 2624-2631, 2019. https://doi.org/10.1002/mrm.27563   DOI
12 Toshiyuki Okubo, Shigeki Aoki, Osamu Abe, Yoshitaka Masutani, Kuni Ohtomo, Masaaki Hori, Keiichi Ishigame, Tsutomu Araki, "Principles of diffusion-weighted MR imaging and application to clinical neurology", Rinsho shinkeigaku, Vol. 44, No. 11, pp. 954-956, 2004.