• Title/Summary/Keyword: Quantitative assessment of software reliability

Search Result 12, Processing Time 0.018 seconds

Applicability of QSAR Models for Acute Aquatic Toxicity under the Act on Registration, Evaluation, etc. of Chemicals in the Republic of Korea (화평법에 따른 급성 수생독성 예측을 위한 QSAR 모델의 활용 가능성 연구)

  • Kang, Dongjin;Jang, Seok-Won;Lee, Si-Won;Lee, Jae-Hyun;Lee, Sang Hee;Kim, Pilje;Chung, Hyen-Mi;Seong, Chang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • Background: A quantitative structure-activity relationship (QSAR) model was adopted in the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH, EU) regulations as well as the Act on Registration, Evaluation, etc. of Chemicals (AREC, Republic of Korea). It has been previously used in the registration of chemicals. Objectives: In this study, we investigated the correlation between the predicted data provided by three prediction programs using a QSAR model and actual experimental results (acute fish, daphnia magna toxicity). Through this approach, we aimed to effectively conjecture on the performance and determine the most applicable programs when designating toxic substances through the AREC. Methods: Chemicals that had been registered and evaluated in the Toxic Chemicals Control Act (TCCA, Republic of Korea) were selected for this study. Two prediction programs developed and operated by the U.S. EPA - the Ecological Structure-Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (T.E.S.T.) models - were utilized along with the TOPKAT (Toxicity Prediction by Komputer Assisted Technology) commercial program. The applicability of these three programs was evaluated according to three parameters: accuracy, sensitivity, and specificity. Results: The prediction analysis on fish and daphnia magna in the three programs showed that the TOPKAT program had better sensitivity than the others. Conclusions: Although the predictive performance of the TOPKAT program when using a single predictive program was found to perform well in toxic substance designation, using a single program involves many restrictions. It is necessary to validate the reliability of predictions by utilizing multiple methods when applying the prediction program to the regulation of chemicals.

International case study comparing PSA modeling approaches for nuclear digital I&C - OECD/NEA task DIGMAP

  • Markus Porthin;Sung-Min Shin;Richard Quatrain;Tero Tyrvainen;Jiri Sedlak;Hans Brinkman;Christian Muller;Paolo Picca;Milan Jaros;Venkat Natarajan;Ewgenij Piljugin;Jeanne Demgne
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4367-4381
    • /
    • 2023
  • Nuclear power plants are increasingly being equipped with digital I&C systems. Although some probabilistic safety assessment (PSA) models for the digital I&C of nuclear power plants have been constructed, there is currently no specific internationally agreed guidance for their modeling. This paper presents an initiative by the OECD Nuclear Energy Agency called "Digital I&C PSA - Comparative application of DIGital I&C Modelling Approaches for PSA (DIGMAP)", which aimed to advance the field towards practical and defendable modeling principles. The task, carried out in 2017-2021, used a simplified description of a plant focusing on the digital I&C systems important to safety, for which the participating organizations independently developed their own PSA models. Through comparison of the PSA models, sensitivity analyses as well as observations throughout the whole activity, both qualitative and quantitative lessons were learned. These include insights on failure behavior of digital I&C systems, experience from models with different levels of abstraction, benefits from benchmarking as well as major contributors to the core damage frequency and those with minor effect. The study also highlighted the challenges with modeling of large common cause component groups and the difficulties associated with estimation of key software and common cause failure parameters.