• Title/Summary/Keyword: Quantitative PCR

Search Result 1,367, Processing Time 0.029 seconds

Risk Factors for COVID-19 Infection Among Healthcare Workers. A First Report From a Living Systematic Review and meta-Analysis

  • Dzinamarira, Tafadzwa;Nkambule, Sphamandla Josias;Hlongwa, Mbuzeleni;Mhango, Malizgani;Iradukunda, Patrick Gad;Chitungo, Itai;Dzobo, Mathias;Mapingure, Munyaradzi Paul;Chingombe, Innocent;Mashora, Moreblessing;Madziva, Roda;Herrera, Helena;Makanda, Pelagia;Atwine, James;Mbunge, Elliot;Musuka, Godfrey;Murewanhema, Grant;Ngara, Bernard
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.263-268
    • /
    • 2022
  • Health care workers (HCWs) are more than ten times more likely to be infected with coronavirus infectious disease 2019 (COVID-19) than the general population, thus demonstrating the burden of COVID-19 among HCWs. Factors that expose HCWs to a differentially high-risk of COVID-19 acquisition are important to elucidate, enable appropriate public health interventions to mitigate against high risk and reduce adverse outcomes from the infection. We conducted a systematic review and meta-analysis to summarize and critically analyze the existing evidence on SARS-CoV-2 risk factors among HCWs. With no geographical limitation, we included studies, in any country, that reported (i) the PCR laboratory diagnosis of COVID-19 as an independent variable (ii) one or more COVID-19 risk factors among HCWs with risk estimates (relative risk, odds ratio, or hazard ratio) (iii) original, quantitative study design, and published in English or Mandarian. Our initial search resulted in 470 articles overall, however, only 10 studies met the inclusion criteria for this review. Out of the 10 studies included in the review, inadequate/lack of protective personal equipment, performing tracheal intubation, and gender were the most common risk factors of COVID-19. Based on the random effects adjusted pooled relative risk, HCWs who reported the use of protective personal equipment were 29% (95% CI: 16% to 41%) less likely to test positive for COVID-19. The study also revealed that HCWs who performed tracheal intubations were 34% (95% CI: 14% to 57%) more likely to test positive for COVID-19. Interestingly, this study showed that female HCWs are at 11% higher risk (RR 1.11 95% CI 1.01-1.21) of COVID-19 than their male counterparts. This article presents initial findings from a living systematic review and meta-analysis, therefore, did not yield many studies; however, it revealed a significant insight into better understanding COVID-19 risk factors among HCWs; insights important for devising preventive strategies that protect them from this infection.

Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress

  • Jeong-Woong, Park;Kyoung Hwan, Kim;Sujung, Kim;Jae-rung, So;Byung-Wook, Cho;Ki-Duk, Song
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.800-811
    • /
    • 2022
  • The integration of metabolomics and transcriptomics may elucidate the correlation between the genotypic and phenotypic patterns in organisms. In equine physiology, various metabolite levels vary during exercise, which may be correlated with a modified gene expression pattern of related genes. Integrated metabolomic and transcriptomic studies in horses have not been conducted to date. The objective of this study was to detect the effect of moderate exercise on the metabolomic and transcriptomic levels in horses. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we analyzed the concentrations of metabolites in muscle and plasma; we also determined the gene expression patterns of branched chain (alpha) keto acid dehydrogenase kinase complex (BCKDK), which encodes the key regulatory enzymes in branched-chain amino acid (BCAA) catabolism, in two breeds of horses, Thoroughbred and Jeju, at different time intervals. The concentrations of metabolites in muscle and plasma were measured by 1H NMR (nuclear magnetic resonance) spectroscopy, and the relative metabolite levels before and after exercise in the two samples were compared. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA), and variable important plots and t-test were used for basic statistical analysis. The stress-induced expression patterns of BCKDK genes in horse muscle-derived cells were examined using quantitative reverse transcription polymerase chain reaction (qPCR) to gain insight into the role of transcript in response to exercise stress. In this study, we found higher concentrations of aspartate, leucine, isoleucine, and lysine in the skeletal muscle of Jeju horses than in Thoroughbred horses. In plasma, compared with Jeju horses, Thoroughbred horses had higher levels of alanine and methionine before exercise; whereas post-exercise, lysine levels were increased. Gene expression analysis revealed a decreased expression level of BCKDK in the post-exercise period in Thoroughbred horses.

Time-dependent Effects of Bisphenol Analogs on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (Bisphenol 구조 유사체가 기수산 물벼룩 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.73-79
    • /
    • 2021
  • Bisphenol A is a representative endocrine disruptor and continuously detected in aquatic environment due to wide use, resulting in adverse effects on growth, development, and reproduction in diverse organisms as well as human. Structural analogs have been developed to substitute BPA are also suspected to have endocrine disrupting effects. In the present study, the time-dependent expression patterns of ecdysteroid synthesis (nvd, cyp314a1), receptors (EcRA, EcRB, USP, ERR), and downstream signaling pathway - related genes (HR3, E75, Vtg, VtgR) were investigated using quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) in the brackish water flea Diaphanosoma celebensis exposed to Bisphenol analogs (BPs; BPA, BPF, and BPS) for 6, 12, and 24 h. As results, the expression of nvd, cyp314a1, EcRs, USP, ERR and E75 mRNA was upregulated at 6 h exposure to BPF, which is earlier than BPA and BPS (12 h). On the other hand, HR3, E75 and VtgR mRNA levels were elevated at 6 h earlier at BPS and BPF than at BPA (12 h), but Vtg mRNA level was slightly changed within 24 h. These findings suggest that like BPA, BPF and BPS can also modulate the transcription of ecdysteroid pathway - related genes with different mechanisms, and have a potential as endocrine disruptors. This study will provide a better understanding the molecular mode of action of bisphenols on ecdysteroid pathway in the brackish water flea.

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

Anti-inflammatory Effects of Houttuynia cordata and Lespedeza cuneata on Lipopolysaccharide-stimulated RAW264.7 Cells (마우스 대식세포 RAW264.7에서 어성초와 야관문의 항염증 효과)

  • Jeong Tae Kim;Chungwook Chung;Seong Ik Park;Man Hyo Lee;Joong Hee Roh;Ho Yong Sohn;Jong Sik Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • In the present study, we prepared hot water extracts and the subsequent organic solvent fractions of methanol extracts of Houttuynia cordata (HC) and Lespedeza cuneata (LC), and investigated their anti-inflammatory effects on lipopolysaccharide-stimulated RAW264.7 cells. Among the treated samples, hexane, chloroform, and ethyl-acetate fractions of HC and LC inhibited nitric oxide (NO) production in a dose-dependent manner, and decreased inducible nitric oxide synthase (iNOS) protein expression. And, we analyzed the flavonoid contents of the ethyl-acetate fraction of HC and LC, and chose apigenin for the further experiments because apigenin was one of flavonoids commonly found in HC and LC. Apigenin dramatically inhibited NO production in a dose-dependent manner without affecting cell viability and decreased iNOS and cyclooxygenase-2 (COX-2) expression. In addition, apigenin suppressed the phosphorylation of p38 and Jun N-terminal kinase (JNK) indicating that apigenin exerts anti-inflammatory activity via the mitogen-activated protein kinase (MAPK) signaling pathway. Subsequently, we conducted RNA-sequencing analysis to detect differentially expressed genes upon apigenin treatment. Among the down-regulated genes, four cytokine genes (interleukin (IL)-1α, IL-1β, IL-6, and colony stimulating factor 2 (CSF2)) were selected for the further analysis, and the reduction of their expression by apigenin was confirmed with quantitative real-time polymerase chain reaction. Overall, our results suggest that Houttuynia cordata and Lespedeza cuneata have the anti-inflammatory effects and apigenin can be the one of key molecules responsible for their anti-inflammatory activities.

Gene expression changes in silkworm embryogenesis for prediction of hatching time

  • Jong Woo Park;Chang Hoon Lee;Chan Young Jeong;Hyeok Gyu Kwon;Seul Ki Park;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Seong-Ryul Kim;Hyun-Bok Kim;Kee Young Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.46 no.1
    • /
    • pp.16-23
    • /
    • 2023
  • The silkworm's dormancy and embryonic development are accomplished through the interaction of various genes. Analysis of the expression of several interacting genes can predict the embryonic stage of silkworms. In this study, we analyzed the changes in the expression level of genes at each stage during the embryonic development of dormant silkworm eggs and selected genes that can predict the hatching time. Jam123 and Jam124 silkworms were collected after egg laying, and the silkworm eggs were preserved using a double refrigeration method and expression analysis was performed for 23 genes during embryogenesis. There were 5 genes showing significant changes during embryogenesis: UDP-glucuronosyltransferases (BmUGTs), heat shock protein hsp20.8 (BmHsp20.8), Cytochromes b5-like proteins (BmCytb5), Krüppel homolog 1 (BmKr-h1), and cuticular protein RR-1 motif 41 (BmCpr41). As a result of quantitative comparison of the expression levels of these 5 genes through real-time PCR, the BmUGTs gene showed a difference between Jam123 and Jam124, making it difficult to see it as an indicator for predicting hatching time. However, the BmHsp20.8 gene had a common expression decreased at the imminent hatching stage. In addition, it was confirmed that the expression level of the BmCytb5 gene decreased to the lowest level at the time of imminent hatching, and the expression of the BmKr-h gene was made only at the time of imminent hatching. The expression of the last BmCpr41 gene can be confirmed only at the time of imminent hatching, and it was confirmed that it shows a rapid increase right before hatching. Taken together, these results suggest that expression analysis of BmHsp20.8, BmCytb5, BmKr-h1, and BmCpr41 genes can determine the stage of embryogenesis, predict hatching time, which facilitate better management of silkworm eggs.

p66Shc in sheep preimplantation embryos: Expression and regulation of oxidative stress through the manganese superoxide dismutase-reactive oxygen species metabolic pathway

  • Tong Zhang;Jiaxin Zhang;Ruilan Li
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1022-1033
    • /
    • 2023
  • Objective: p66Shc, a 66 kDa protein isoform encoded by the proto-oncogene SHC, is an essential intracellular redox homeostasis regulatory enzyme that is involved in the regulation of cellular oxidative stress, apoptosis induction and the occurrence of multiple age-related diseases. This study investigated the expression profile and functional characteristics of p66Shc during preimplantation embryo development in sheep. Methods: The expression pattern of p66Shc during preimplantation embryo development in sheep at the mRNA and protein levels were studied by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The effect of p66Shc knockdown on the developmental potential were evaluated by cleavage rate, morula rate and blastocyst rate. The effect of p66Shc deficiency on reactive oxygen species (ROS) production, DNA oxidative damage and the expression of antioxidant enzymes (e.g., catalase and manganese superoxide dismutase [MnSOD]) were also investigated by immunofluorescence staining. Results: Our results showed that p66Shc mRNA and protein were expressed in all stages of sheep early embryos and that p66Shc mRNA was significantly downregulated in the 4-to 8-cell stage (p<0.05) and significantly upregulated in the morula and blastocyst stages after embryonic genome activation (EGA) (p<0.05). Immunofluorescence staining showed that the p66Shc protein was mainly located in the peripheral region of the blastomere cytoplasm at different stages of preimplantation embryonic development. Notably, serine (Ser36)-phosphorylated p66Shc localized only in the cytoplasm during the 2- to 8-cell stage prior to EGA, while phosphorylated (Ser36) p66Shc localized not only in the cytoplasm but also predominantly in the nucleus after EGA. RNAi-mediated silencing of p66Shc via microinjection of p66Shc siRNA into sheep zygotes resulted in significant decreases in p66Shc mRNA and protein levels (p<0.05). Knockdown of p66Shc resulted in significant declines in the levels of intracellular ROS (p<0.05) and the DNA damage marker 8-hydroxy2'-deoxyguanosine (p<0.05), markedly increased MnSOD levels (p<0.05) and resulted in a tendency to develop to the morula stage. Conclusion: These results indicate that p66Shc is involved in the metabolic regulation of ROS production and DNA oxidative damage during sheep early embryonic development.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

Expanded IL-22+ Group 3 Innate Lymphoid Cells and Role of Oxidized LDL-C in the Pathogenesis of Axial Spondyloarthritis with Dyslipidaemia

  • Hong Ki Min;Jeonghyeon Moon;Seon-Yeong Lee;A Ram Lee;Chae Rim Lee;Jennifer Lee;Seung-Ki Kwok;Mi-La Cho;Sung-Hwan Park
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.43.1-43.14
    • /
    • 2021
  • Group 3 innate lymphoid cells (ILC3), which express IL-22 and IL-17A, has been introduced as one of pathologic cells in axial spondyloarthritis (axSpA). Dyslipidaemia should be managed in axSpA patients to reduce cardiovascular disease, and dyslipidaemia promotes inflammation. This study aimed to reveal the role of circulating ILC3 in axSpA and the impact of dyslipidaemia on axSpA pathogenesis. AxSpA patients with or without dyslipidaemia and healthy control were recruited. Peripheral blood samples were collected, and flow cytometry analysis of circulating ILC3 and CD4+ T cells was performed. The correlation between Ankylosing Spondylitis Disease Activity Score (ASDAS)-C-reactive protein (CRP) and circulating immune cells was evaluated. The effect of oxidized low-density lipoprotein cholesterol (oxLDL-C) on immune cell differentiation was confirmed. AxSpA human monocytes were cultured with with oxLDL-C, IL-22, or oxLDL-C plus IL-22 to evaluate osteoclastogenesis using tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative PCR of osteoclast-related gene expression. Total of 34 axSpA patients (13 with dyslipidaemia and 21 without) were included in the analysis. Circulating IL-22+ ILC3 and Th17 were significantly elevated in axSpA patients with dyslipidaemia (p=0.001 and p=0.034, respectively), and circulating IL-22+ ILC3 significantly correlated with ASDAS-CRP (Rho=0.4198 and p=0.0367). Stimulation with oxLDL-C significantly increased IL-22+ ILC3, NKp44- ILC3, and Th17 cells, and these were reversed by CD36 blocking agent. IL-22 and oxLDL-C increased TRAP+ cells and osteoclast-related gene expression. This study suggested potential role of circulating IL-22+ ILC3 as biomarker in axSpA. Furthermore, dyslipidaemia augmented IL-22+ ILC3 differentiation, and oxLDL-C and IL-22 markedly increased osteoclastogenesis of axSpA.

GRIM-19 Ameliorates Multiple Sclerosis in a Mouse Model of Experimental Autoimmune Encephalomyelitis with Reciprocal Regulation of IFNγ/Th1 and IL-17A/Th17 Cells

  • Jeonghyeon Moon;Seung Hoon Lee;Seon-yeong Lee;Jaeyoon Ryu;Jooyeon Jhun;JeongWon Choi;Gyoung Nyun Kim;Sangho Roh;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.40.1-40.15
    • /
    • 2020
  • The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) is located in the mitochondrial inner membrane and is homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain. Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord. Although both the cause and mechanism of MS progression remain unclear, it is accepted that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ expression increased in EAE mice that received injections of the GRIM-19 OVN. GRIM19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.