• Title/Summary/Keyword: Quantitative Defect Density

Search Result 6, Processing Time 0.025 seconds

Defect structure classification of neutron-irradiated graphite using supervised machine learning

  • Kim, Jiho;Kim, Geon;Heo, Gyunyoung;Chang, Kunok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2783-2791
    • /
    • 2022
  • Molecular dynamics simulations were performed to predict the behavior of graphite atoms under neutron irradiation using large-scale atomic/molecular massively parallel simulator (LAMMPS) package with adaptive intermolecular reactive empirical bond order (AIREBOM) potential. Defect structures of graphite were compared with results from previous studies by means of density functional theory (DFT) calculations. The quantitative relation between primary knock-on atom (PKA) energy and irradiation damage on graphite was calculated. and the effect of PKA direction on the amount of defects is estimated by counting displaced atoms. Defects are classified into four groups: structural defects, energy defects, vacancies, and near-defect structures, where a structural defect is further subdivided into six types by decision tree method which is one of the supervised machine learning techniques.

Effectiveness Analysis and Profile Design Automation Tool Implementation for The Mass Production Weapon System Environmental Stress Screening Test (양산 무기체계 환경 부하 선별 시험 효과도 분석 및 프로파일 설계 자동화 도구 구현)

  • Kim, Jang-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.379-388
    • /
    • 2016
  • There are various system defects from weapons manufacturing due to the numerous production processes and various production environments. The first kind of defect is patent defects, which can be detected by visual inspection, functional testing, and existing quality control procedures during the manufacturing process. The second kind is latent defects, which cannot be detected though existing quality management approaches because of the complexity of the system and manufacturing process. To minimize the initial defect problems, environmental stress screening (ESS) is needed to detect the defects, remove them, and improve the product conditions based on the environmental stress conditions of temperature and vibration. We implemented a tool for quantitative ESS effectiveness analysis and profile design automation based on MIL-HDBK-344 and verified it using six scenarios with different temperature stress, vibration stress, and test designs.

Quantitative Analysis on Near Band Edge Images in GaAs Wafer (GaAs 웨이퍼의 대역단 영상에 대한 정량적 해석)

  • Kang, Seong-jun;Na, Cheolhun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.861-868
    • /
    • 2017
  • Near band infrared imaging technique has adopted for imaging EL2 and shallow level distributions in undoped semi-insulating LEC GaAs. This technique, which relies on the mapping of near bandgap infrared transmission, is both rapid and non-destructive. Until now no quantitative analysis has been reported for near band edge region which gives the reverse contrast on EL2 absorption images. This paper presents the spectral, spatial and temperature dependence of photoquenching forward and inverse mechanism in the band edge domain for cells and walls and for direct and inverted contrast conditions during transitory regimes. The difference in the threshold for the EL2w and EL2b defects could be attributed to the contribution of a different electrical assistance due to a different species of impurities. Quantitative analysis results show an increased density of EL2w and a small reduction of EL2b in the region of the walls where there is a high density of dislocations.

The effect of local application of thymoquinone, Nigella sativa's bioactive component, on bone healing in experimental bone defects infected with Porphyromonas gingivalis

  • Batug, Ayse Yilmaz;Tomruk, Ceyda Ozcakir;Guzel Elif;Ozdemir, İlkay;Duygu, Gonca;Kutan, Esma;Ulker, Gul Merve Yalcin;Arici, Fatma Ozen
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.3
    • /
    • pp.206-219
    • /
    • 2022
  • Purpose: This study was performed to evaluate the influence of local application of thymoquinone (TQ) on bone healing in experimental bone defects infected with Porphyromonas gingivalis (PG). Methods: Forty-two female rats were randomly divided into 6 groups. A bone defect was created on the right tibia of all animals. The PG, PG/collagen membrane (COL) and PG/TQ/COL groups were infected with PG. In the COL and PG/COL groups, the defects were covered with a COL; in the TQ/COL and PG/TQ/COL groups, the defects were covered with a TQ-containing COL. After 28 days, all animals were sacrificed. Quantitative measurements of new bone formation and osteoblast lining, as well as semiquantitative measurements of capillary density and tissue response, were analyzed. Furthermore, the presence of bacterial infections in defect areas was evaluated. Results: The new bone formation, osteoblast number, and capillary density were significantly higher in the TQ groups than in the control groups (P<0.001, P<0.001, and P<0.01, respectively). In a comparison between the TQ/COL group, with a TQ-containing COL (TQ/COL), and the PG-infected TQ-containing COL (PG/TQ/COL) group, the newly formed bone and capillary density were higher in the TQ/COL group (P<0.01). When the control group was compared to the PG, PG/COL, and PG/TQ/COL groups in terms of tissue response, the differences were statistically significant (P<0.001, P=0.02, and P=0.041, respectively). The intensity of the inflammatory cell reaction was higher in the PG, PG/COL, and PG/TQ/COL groups (P<0.05). Conclusions: Within the limitations of this study, the local application of a TQ-containing COL positively affected bone healing even if the bone defects were infected. The results suggest that TQ increased angiogenesis and showed promise for accelerating bone defect healing. Further research is warranted to support these findings and reach more definitive conclusions.

Estimation of sewer deterioration by Weibull distribution function (와이블 분포함수를 이용한 하수관로 노후도 추정)

  • Kang, Byongjun;Yoo, Soonyu;Park, Kyoohong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.251-258
    • /
    • 2020
  • Sewer deterioration models are needed to forecast the remaining life expectancy of sewer networks by assessing their conditions. In this study, the serious defect (or condition state 3) occurrence probability, at which sewer rehabilitation program should be implemented, was evaluated using four probability distribution functions such as normal, lognormal, exponential, and Weibull distribution. A sample of 252 km of CCTV-inspected sewer pipe data in city Z was collected in the first place. Then the effective data (284 sewer sections of 8.15 km) with reliable information were extracted and classified into 3 groups considering the sub-catchment area, sewer material, and sewer pipe size. Anderson-Darling test was conducted to select the most fitted probability distribution of sewer defect occurrence as Weibull distribution. The shape parameters (β) and scale parameters (η) of Weibull distribution were estimated from the data set of 3 classified groups, including standard errors, 95% confidence intervals, and log-likelihood values. The plot of probability density function and cumulative distribution function were obtained using the estimated parameter values, which could be used to indicate the quantitative level of risk on occurrence of CS3. It was estimated that sewer data group 1, group 2, and group 3 has CS3 occurrence probability exceeding 50% at 13th-year, 11th-year, and 16th-year after the installation, respectively. For every data groups, the time exceeding the CS3 occurrence probability of 90% was also predicted to be 27th- to 30th-year after the installation.

The quantitative analysis by digital subtraction radiography on the effect of Enamel Matrix Protein and Platelet-Rich Plasma, combined with Xenograft in the treatment of intrabony defect in humans (골 내 결손 치료 시 법랑 기질 단백질과 이종골 이식 및 혈소판 농축 혈장의 골 재생 효과에 대한 디지털 공제술의 정량적 분석)

  • Han, Keum-Ah;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.961-974
    • /
    • 2005
  • Various biological approaches to the promotion of periodontal regeneration have been used. These can be divided into the use of growth and differentiation factors, application of extracellular matrix proteins and attachment factors and use of mediators of bone metabolism. The purpose of this study was to evaluate the effect of enamel matrix protein and platelet-rich plasma on the treatment of intrabony defect, with bovine-derived bone powder in humans by digital subtraction radiography. 12 teeth(experimental I group) were treated with enamel matrix protein combined with bovine-derived bone powder and 12 teeth(experimental II group) were treated with platelet-rich plasma combined with bovine-derived bone powder. The change of bone density was assessed by digital subtraction radiography in this study. The change of mineral content was assessed in the method that two radiography were put into computer program to be overlapped and the previous image was subtracted by the later one. Both groups were statistically analyzed by Wilcoxon signed Ranks Test and Mann-whitney Test using SPSS program for windows(5% significance level). The results were as follows: 1. The radiolucency in 3 months after surgery was significantly increased than 1 month after surgery in both groups(experimental I and II groups)(p<0.05). 2. The radiopacity in 6 months after surgery was significantly increased than 3 months after surgery in both groups(experimental I and II groups) (p<0.05). 3. In experimental I group, there was no significant difference between 1 month and 6 months after surgery. 4. In experimental II group. the radiopacity in 6 months after surgery was significantly increased than 1 month after surgery(p<0.05). 5. There was no significant difference between experimental I and II group at 1 month and 3 months after surgery, but the radiopacity in experimental II group was significantly increased at 6 months after surgery(p<0.05). In conclusion, platelet-rich plasma can enhance bone density than enamel matrix protein until 6 months after surgery.