• Title/Summary/Keyword: Quantitative CT

Search Result 325, Processing Time 0.026 seconds

Evaluation of Perfusion and Image Quality Changes by Reconstruction Methods in 13N-Ammonia Myocardial Perfusion PET/CT (13N-암모니아 심근관류 PET/CT 검사 시 영상 재구성 방법에 따른 관류량 변화와 영상 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: The aim of this study was to evaluate changes of quantitative and semi-quantitative myocardial perfusion indices and image quality by image reconstruction methods in $^{13}N$-ammonia ($^{13}N-NH_3$) myocardial perfusion PET/CT. Materials and Methods: Data of 14 (8 men, 6 women) patients underwent rest and adenosine stress $^{13}N-NH_3$ PET/CT (Biograph TruePoint 40 with TrueV, Siemens) were collected. Listmode scans were acquired for 10 minutes by injecting 370MBq of $^{13}N-NH_3$. Dynamic and static reconstruction was performed by use of FBP, iterative2D (2D), iterative3D (3D) and iterative TrueX (TrueX) algorithm. Coronary flow reserve (CFR) of dynamic reconstruction data, extent(%) and total perfusion deficit (TPD) (%) measured in sum of 4-10 minutes scan were evaluated by comparing with 2D method which was recommended by vendor. The image quality of each reconstructed data was compared and evaluated by five nuclear medicine physicians through a blind test. Results: CFR were lower in TrueX 18.68% (P=0.0002), FBP 4.35% (P=0.1243) and higher in 3D 7.91% (P<0.0001). As semi-quantitative values, extent and TPD of stress were higher in 3D 3.07%p (P=0.001), 2.36%p (P=0.0002), FBP 1.93%p (P=0.4275), 1.57%p (P=0.4595), TrueX 5.43%p (P=0.0003), 3.93%p (P<0.0001). Extent and TPD of rest were lower in FBP 0.86%p (P=0.1953), 0.57%p (P=0.2053) and higher in 3D 3.21%p (P=0.0006), 2.57%p (P=0.0001) and TrueX 5.36%p (P<0.0001), 4.36%p (P<0.0001). Based on the results of the blind test for image resolution and noise from the snapshot, 3D obtained the highest score, followed by 2D, TrueX and FBP. Conclusion: We found that quantitative and semi-quantitative myocardial perfusion values could be under- or over-estimated according to the reconstruction algorithm in $^{13}N-NH_3$ PET/CT. Therefore, proper dynamic and static reconstruction method should be established to provide accurate myocardial perfusion value.

  • PDF

A Performance Enhancement of Osteoporosis Classification in CT images (CT 영상에서 골다공증 판별 방법의 성능 향상)

  • Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1248-1259
    • /
    • 2016
  • Classification methods based on dual energy X-ray absorptiometry, ultrasonic waves, and quantitative computed tomography have been proposed. Also, a classification method based on machine learning with bone mineral density and structural indicators extracted from the CT images has been proposed. We propose a method which enhances the performance of existing classification method based on bone mineral density and structural indicators by extending structural indicators and using principal component analysis. Experimental result shows that the proposed method in this paper improves the correctness of osteoporosis classification 2.8% with extended structural indicators only and 4.8% with both extended structural indicators and principal component analysis. In addition, this paper proposes a method of automatic phantom analysis needed to convert the CT values to BMD values. While existing method requires manual operation to mark the bone region within the phantom, the proposed method detects the bone region automatically by detecting circles in the CT image. The proposed method and the existing method gave the same conversion formula for converting CT value to bone mineral density.

Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation (Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소)

  • Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.295-302
    • /
    • 2022
  • Sparse-view computed tomography (CT) imaging technique is able to reduce radiation dose, ensure the uniformity of image characteristics among projections and suppress noise. However, the reconstructed images obtained by the sparse-view CT imaging technique suffer from severe artifacts, resulting in the distortion of image quality and internal structures. In this study, we proposed a convolutional neural network (CNN) with wavelet transformation and residual learning for reducing artifacts in sparse-view CT image, and the performance of the trained model was quantitatively analyzed. The CNN consisted of wavelet transformation, convolutional and inverse wavelet transformation layers, and input and output images were configured as sparse-view CT images and residual images, respectively. For training the CNN, the loss function was calculated by using mean squared error (MSE), and the Adam function was used as an optimizer. Result images were obtained by subtracting the residual images, which were predicted by the trained model, from sparse-view CT images. The quantitative accuracy of the result images were measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The results showed that the trained model is able to improve the spatial resolution of the result images as well as reduce artifacts in sparse-view CT images effectively. Also, the trained model increased the PSNR and SSIM by 8.18% and 19.71% in comparison to the imaging model trained without wavelet transformation and residual learning, respectively. Therefore, the imaging model proposed in this study can restore the image quality of sparse-view CT image by reducing artifacts, improving spatial resolution and quantitative accuracy.

Does Simultaneous Computed Tomography and Quantitative Computed Tomography Show Better Prescription Rate than Dual-energy X-ray Absorptiometry for Osteoporotic Hip Fracture?

  • Ko, Jae Han;Lim, Suhan;Lee, Young Han;Yang, Ick Hwan;Kam, Jin Hwa;Park, Kwan Kyu
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.233-240
    • /
    • 2018
  • Purpose: This study aimed to evaluate the efficacy of simultaneous computed tomography (CT) and quantitative CT (QCT) in patients with osteoporotic hip fracture (OHF) by analyzing the osteoporosis detection rate and physician prescription rate in comparison with those of conventional dual-energy X-ray absorptiometry (DXA). Materials and Methods: This study included consecutive patients older than 65 years who underwent internal fixation or hip arthroplasty for OHF between February and May 2015. The patients were assigned to either the QCT (47 patients) or DXA group (51 patients). The patients in the QCT group underwent QCT with hip CT, whereas those in the DXA group underwent DXA after surgery, before discharge, or in the outpatient clinic. In both groups, the patients received osteoporosis medication according to their QCT or DXA results. The osteoporosis evaluation rate and prescription rate were determined at discharge, postoperative (PO) day 2, PO day 6, and PO week 12 during an outpatient clinic visit. Results: The osteoporosis evaluation rate at PO week 12 was 70.6% (36 of 51 patients) in the DXA group and 100% in the QCT group (P<0.01). The prescription rates of osteoporosis medication at discharge were 70.2% and 29.4% (P<0.001) and the cumulative prescription rates at PO week 12 were 87.2% and 60.8% (P=0.003) in the QCT and DXA groups, respectively. Conclusion: Simultaneous CT and QCT significantly increased the evaluation and prescription rates in patients with OHF and may enable appropriate and consistent prescription of osteoporosis medication, which may eventually lead to patients' medication compliance.

A Study on the Application of Deep Learning Model by Using ACR Phantom in CT Quality Control (CT 정도관리에서 ACR 팬텀을 이용한 딥러닝 모델 적용에 관한 연구)

  • Eun-Been Choi;Si-On Kim;Seung-Won Choi;Jae-Hee Kim;Young-Kyun Kim;Dong-Kyun Han
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.535-542
    • /
    • 2023
  • This study aimed to implement a deep learning model that can perform quantitative quality control through ACTS software used for quantitative evaluation of ACR phantom in CT quality control and evaluate its usefulness. By changing the scanning conditions, images of three modules of the ACR phantom's slice thickness (ST), low contrast resolution (LC), and high contrast resolution (HC) were obtained and classified as ACTS software. The deep learning model used ResNet18, implementing three models in which ST, HC, and LC were learned with epoch 50 and an integrated model in which three modules were learned with Epoch 10, 30, and 50 at once. The performance of each model was evaluated through Accuracy and Loss. When comparing and evaluating the accuracy and loss function values of the deep learning models by ST, LC, and HC modules, the Accuracy and Loss of the HC model were the best with 100% and 0.0081, and in the integrated model according to the Epoch value, Accuracy and Loss with epoch 50 were the best with 96.29% and 0.1856. This paper showed that quantitative quality control is possible through a deep learning model, and it can be used as a basis and evidence for applying deep learning to the CT quality control.

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.

Computed Tomography Findings Associated with Treatment Failure after Antibiotic Therapy for Acute Appendicitis

  • Wonju Hong;Min-Jeong Kim;Sang Min Lee;Hong Il Ha;Hyoung-Chul Park;Seung-Gu Yeo
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • Objective: To identify the CT findings associated with treatment failure after antibiotic therapy for acute appendicitis. Materials and Methods: Altogether, 198 patients who received antibiotic therapy for appendicitis were identified by searching the hospital's surgery database. Selection criteria for antibiotic therapy were uncomplicated appendicitis with an appendiceal diameter equal to or less than 11 mm. The 86 patients included in the study were divided into a treatment success group and a treatment failure group. Treatment failure was defined as a resistance to antibiotic therapy or recurrent appendicitis during a 1-year follow-up period. Two radiologists independently evaluated the following CT findings: appendix-location, involved extent, maximal diameter, thickness, wall enhancement, focal wall defect, periappendiceal fat infiltration, and so on. For the quantitative analysis, two readers independently measured the CT values at the least attenuated wall of the appendix by drawing a round region of interest on the enhanced CT (HUpost) and non-enhanced CT (HUpre). The degree of appendiceal wall enhancement (HUsub) was calculated as the subtracted value between HUpost and HUpre. A logistic regression analysis was used to identify the CT findings associated with treatment failure. Results: Sixty-four of 86 (74.4%) patients were successfully treated with antibiotic therapy, with treatment failure occurring in the remaining 22 (25.5%). The treatment failure group showed a higher frequency of hypoenhancement of the appendiceal wall than the success group (31.8% vs. 7.8%; p = 0.005). Upon quantitative analysis, both HUpost (46.7 ± 21.3 HU vs. 58.9 ± 22.0 HU; p = 0.027) and HUsub (26.9 ± 17.3 HU vs. 35.4 ± 16.6 HU; p = 0.042) values were significantly lower in the treatment failure group than in the success group. Conclusion: Hypoenhancement of the appendiceal wall was significantly associated with treatment failure after antibiotic therapy for acute appendicitis.

Quantitative Evaluation of Sparse-view CT Images Obtained with Iterative Image Reconstruction Methods (반복적 연산으로 얻은 Sparse-view CT 영상에 대한 정량적 평가)

  • Kim, H.S.;Gao, Jie;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.257-263
    • /
    • 2011
  • Sparse-view CT imaging is considered to be a solution to reduce x-ray dose of CT. Sparse-view CT imaging may have severe streak artifacts that could compromise the image qualities. We have compared quality of sparseview images reconstructed with two representative iterative reconstruction techniques, SIRT and TV-minimization, in terms of image error and edge preservation. In the comparison study, we have used the Shepp-Logan phantom image and real CT images obtained with a micro-CT. In both phantom image and real CT image tests, TV-minimization technique shows the best performance in error reduction and preserving edges. However, the excessive computation time of TV-minimization is a technical challenge for the practical use.

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Lee, Jooyoung;Son, Hyeon-Soo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.15-24
    • /
    • 2021
  • Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.