• Title/Summary/Keyword: Quality of transport

검색결과 992건 처리시간 0.036초

A Finite Element Model of Groundwater Contamination at Landfill Site (매립지 지하수 오염물 확산이송의 유한요소 모형)

  • 류병로
    • Journal of Environmental Science International
    • /
    • 제5권4호
    • /
    • pp.495-511
    • /
    • 1996
  • The quantitative study of the groundwater contamination in a porous media is a difficult task. For complex problems, numerical solutions are the most effective means to study the movement of contaminants in the groundwater, The solute transport model used in this study has proved to be an efficient tool to model contaminant transport for complex problems. The model demonstrates its effectiveness in reproducing the coniamination by ihlorides of the groundwater at the landfill site due to leachath from the wastes. It describes the two dimentional solute transport and alteration of the water quality and forecasts the contamination for different management alternatives of the landfill. The model also indicates how the groundwater contamination can be contained within the lower site if a barrier is constructed downstream of the disposed wastes.

  • PDF

Effects of transport stress on physiological responses and milk production in lactating dairy cows

  • Hong, Heeok;Lee, Eunchae;Lee, In Hyung;Lee, Sang-Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권3호
    • /
    • pp.442-451
    • /
    • 2019
  • Objective: This study was conducted to investigate the effect of transport stress on physiological and hematological responses and milk performance in lactating dairy cows. Methods: Ten lactating dairy cows were randomly divided into 2 groups. The treatment group (TG) was transported 200 km for 4 h by truck, and the control group (NTG) was restrained by stanchion for 4 h in Konkuk University farm. Blood and milk samples were collected at 24 h pre-transport; 1, 2, and 4 h during transport; and 2, 24, and 48 h post-transport. Milk yields were measured at 24 h pre-transport, 0 h during transport, and 24, 48, and 72 h post-transport. Results: Leukocyte, neutrophil, and monocyte numbers in the TG were significantly higher than those of the NTG at each experimental time point. Lymphocyte numbers in the TG were significantly (p<0.05) higher than those of the NTG at 48 h post-transport. Additionally, the neutrophil:lymphocyte ratio of the TG was 45% and 46% higher than that of the NTG at 4 h during transport and 2 h post-transport, respectively. There were no significant differences in erythrocyte numbers, hemoglobin concentrations, platelet numbers, and hematocrit percentages between two groups. Cortisol levels in the TG were significantly (p<0.05) higher than those in the NTG. Milk yields in the TG were lower than those in the NTG. The somatic cell count (SCC) of the TG was significantly (p<0.05) higher than that of the NTG at 1 and 2 h during transport; that of the TG increased dramatically at 1 h during transport and gradually decreased subsequently. Conclusion: Transport stress increased blood parameters including leucocyte, neutrophil, and monocyte numbers by increased cortisol levels, but did not affect erythrocytes, hemoglobin and hematocrit levels. Additionally, transport resulted in a decrease in milk yield and reduced milk quality owing to an increase in milk SCC.

Network-Adaptive Transport Error Control for Reliable Wireless Media Transmission (신뢰성 있는 무선 미디어 전송을 위한 네트워크 적응형 전송오류 제어)

  • Lee Chul-Ho;Choi Jeong-Yong;Kwon Young-Woo;Kim Jongwon;Shin Jitae;Jeon Dong-San;Kim Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • 제10권4호통권29호
    • /
    • pp.548-556
    • /
    • 2005
  • In wireless network environments, wireless channels are characterized by time-varying fading and interference conditions, which may lead to burst packet corruptions and delay variation. This can cause severe quality degradation of streaming media. To guarantee successful transmission of media over the hostile wireless networks, where channel conditions are highly fluctuating, a flexible and network-adaptive transport method is required. Thus, we propose a network-adaptive transport error control consisting of packet-level interleaved FEC and delay-constrained ARQ, which acts as an application-level transport method of streaming media to alleviate burst packet losses while adapting to the changing channel condition in wireless networks. The performances of the proposed network-adaptive transport error control, general error control schemes, and hybrid schemes are evaluated by a developed simulator at the transport-level and video quality of streaming media. Simulation results show that the proposed mechanism provides the best overall performance among compared other schemes in terms of the transport-level performance of error control and the performance of video quality for streaming media.

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Hwa-Woon Lee;Yoo
    • Journal of Environmental Science International
    • /
    • 제1권1호
    • /
    • pp.19-33
    • /
    • 1992
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorolog ital processecs . In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification Process through observation is emphasized.

  • PDF

The Relationship between Algae Transport and Current in the Daecheong Reservoir (대청호 유속에 따른 조류이동 영향)

  • Yu, Soon-Ju;Hwang, Jong-Yeon;Chae, Min-Hi;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • 제22권5호
    • /
    • pp.887-894
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom every year. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir during the wet season. Nutrients from diffuse sources trigger the propagation of the algal bloom. This study is aimed to analyze relationship between the water current by the simulation and algae transport from the main body in the Daecheong reservoir including tributary where algal bloom has occurred seriously every year. Water quality model CE-QUAL-W2 was applied to analyze water movement in draught season (2001) and flooding season (2003). The result of simulation corresponded with the observed water elevation level, 63~80 m and showed stratification of the Daecheong reservoir. In the draught season, as velocity and direction off low in the reservoir was estimated to affect algae transport including nutrient supply from small tributary, algal blooms occurred in the stagnate zone of middle stream of the reservoir. On the other hand, in the flooding season, it was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. In result, algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control.

Change of Groundwater Quality derived from Contaminant Sources (오염원에 의한 지하수 수질의 변화)

  • Bae, Sang-Kuen
    • Journal of Environmental Science International
    • /
    • 제4권5호
    • /
    • pp.75-75
    • /
    • 1995
  • In order to provide for the guidance on groundwater quality monitoring network design and also, to suggest the index to the solution of the contaminated groundwater remediation problems in the lake watershed, it is necessary to analyze the contaminant transport in the groundwater. The solute transport was analyzed in the lake watershed to investigate the behavior of the injected contaminant sources depend on the relationships between the point of contaminant sources and position of the lake. Three hypothetical groundwater flow systems, which is composed of a flow-through lake and two solute sources, were considered. The lakes located in the upper, middle, and lower portions of a watershed respectively. The transported contaminant was numerically simulated for five years by using MT3D contaminant transport model under the three-dimentional steady state conditions. From the above simulations, it can be concluded that the contaminant concentration was high as the contaminant source located at the upper position of a watershed, and the influence of the contaminant injection was large as the solute source located at the lower position. When the injection of contaminant was continued for one year without regard to the position of contaminant source and the lake, the influence of contaminant source was reached to bedrock.

Indoor air quality evaluation in intercity buses in real time traffic

  • Kazim O. Demirarslan;Serden, Basak
    • Advances in environmental research
    • /
    • 제11권1호
    • /
    • pp.17-30
    • /
    • 2022
  • Road transport allows all forms of land conditions to be met at less cost. Because of this function, despite numerous disadvantages, it becomes the most frequently used method of transport, especially in underdeveloped or developing countries. One of the most significant factors used in evaluating the atmosphere's air quality is the amount of CO2, increasing people's density in indoor spaces. The amount of CO2 indoors is, therefore, vital to determine. In this study, CO2 and temperature measurements made on nine different bus journey was made in Turkey. The minimum and maximum values were recorded as 555 ppm and 3000 ppm CO2, respectively, in the measurements. On all journeys, the average concentration is 1088.72 ppm. The minimum and maximum values were measured as 17.4℃ and 32.7℃ in the temperature measurements, and the average of all trips was calculated to be 25.76℃. In this study conducted before the Covid-19 pandemic, it was determined that the amount of CO2 increased with the density and insufficient ventilation in the buses. The risk of infection increases in places with high human density and low clean air. For situations such as pandemics, CO2 measurement is a rapid indicator of determining human density.

Change of Groundwater Quality derived from Contaminant Sources (오염원에 의한 지하수 수질의 변화)

  • 배상근
    • Journal of Environmental Science International
    • /
    • 제4권5호
    • /
    • pp.461-468
    • /
    • 1995
  • In order to provide for the guidance on groundwater quality monitoring network design and also, to suggest the index to the solution of the contaminated groundwater remediation problems in the lake watershed, it is necessary to analyze the contaminant transport in the groundwater. The solute transport was analyzed in the lake watershed to investigate the behavior of the injected contaminant sources depend on the relationships between the point of contaminant sources and position of the lake. Three hypothetical groundwater flow systems, which is composed of a flow-through lake and two solute sources, were considered. The lakes located in the upper, middle, and lower portions of a watershed respectively. The transported contaminant was numerically simulated for five years by using MT3D contaminant transport model under the three-dimentional steady state conditions. From the above simulations, it can be concluded that the contaminant concentration was high as the contaminant source located at the upper position of a watershed, and the influence of the contaminant injection was large as the solute source located at the lower position. When the injection of contaminant was continued for one year without regard to the position of contaminant source and the lake, the influence of contaminant source was reached to bedrock.

  • PDF

A Novel Mathematical Modeling in Web Transport Systems considering Thermal and Gravity Effects (열 및 중력 효과를 고려한 웹 이송 시스템의 새로운 수학적 모델링)

  • Kim J.S.;Kim G.Y.;Shin J.M.;Lee J.M.;Choi J.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.333-334
    • /
    • 2006
  • A novel mathematical modeling in web transport systems for Continuous Annealing Processes (CAP) is proposed. Despite of thermal and weight effects in dynamics of web transport systems, the conventional mathematical model does not consider those effects. Disregard of these effects causes the low manufacturing quality of webs in CAP. In order to improve the manufacturing quality of webs in CAP, moreover, precise tension control is required based on the mathematical model. Therefore, an advanced mathematical model considering thermal and weight effects in CAP should be established. The effectiveness of a novel mathematical model is evaluated by comparing the performances of the PI tension control system based on the proposed mathematical model with that based on the conventional one through the computer simulation.

  • PDF