• Title/Summary/Keyword: Quality factor($Q{\times}f_r$)

Search Result 33, Processing Time 0.034 seconds

Microwave dielectric properties of $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$ ($B_2O_3$ 첨가에 따른 $0.96MgTiO_3-0.04SrTiO_3$의 마이크로파 유전특성)

  • Kim, Jung-Hun;Choi, Eui-Sun;Lee, Mun-Ki;Jung, Jang-Ho;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.682-685
    • /
    • 2002
  • The $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$(10wt%) were prepared by the conventional mixed oxide method. The structural properties were investigated with sintering temperature by XRD. According to the X-ray diffraction pattern of the $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$(10wt%), the ilmenite $MgTiO_3$ and perovskite $SrTiO_3$ structures were coexisted and secondary phase of the $MgTi_2O_5$ were appeared. In the case of $0.96MgTiO_3-0.04SrTiO_3+B_2O_3$(10wt%) ceramics sintered $1225^{\circ}C$, dielectric constant, quality factor and temperature coefficient of resonant frequency were 19.82, 62,735GHz, $-2.983ppm/^{\circ}C$, respectively.

  • PDF

Microwave Dielectric Properties of $0.95MgTiO_3-0.05SrTiO_3$ Ceramics with $V_2O_5$ ($V_2O_5$ 첨가에 따른 $0.95MgTiO_3-0.05SrTiO_3$ 세라믹스의 마이크로파 유전특성)

  • Nam, Gyu-Bin;Kim, Kang;Park, In-Gil;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.112-116
    • /
    • 2002
  • The $0.95MgTiO_3-0.05SrTiO_3$ ceramics with $V_2O_5$(10wt%) were prepared by the conventional mixed oxide method. The structural properties were investigated with sintering temperatue by XRD. According to the X-ray diffraction pattern of the $0.95MgTiO_3-0.05SrTiO_3$ ceramics with $V_2O_5$(10wt%), the ilmenite $MgTiO_3$ and perovskite $SrTiO_3$ structures were coexisted and secondary phase $MgTi_2O_5$ were appeared. In the case of $0.95MgTiO_3-0.05SrTiO_3$ ceramics with $V_2O_5$(10wt%), dielectric constant, quality factor and temperature coefficient of resonant frequency were 15.84~18.28, 12627~23138GHz, -21.414~1.568$ppm/^{\circ}C$, respectively.

  • PDF

Microwave Dielectric Properties of the $(1-x)Mg_4Ta_2O_9-x(TiO_2,\;CaTiO_3,\;SrTiO_3)$ Ceramics ($(1-x)Mg_4Ta_2O_9-x(TiO_2,\;CaTiO_3,\;SrTiO_3)$ 세라믹스의 마이크로파 유전 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Bae, Seon-Gi;Lee, Young-Hie
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.344-348
    • /
    • 2006
  • The effect of x on microwave dielectric properties of the $(1-x)Mg_4Ta_2O_9-x(TiO_2,\;CaTiO_3,\;SrTiO_3)$ ceramics for microwave components were investigated. All spcecimens prepared by the conventional mixed oxied method and sintered at $1450^{\circ}C$. Microwave dielectric properties of the $(1-x)Mg_4Ta_2O_9-xTiO_2$ ceramics were influenced by $MgTi_2O_5$ phase. Also the microwave dielectric properties of the $(1-x)Mg_4Ta_2O_9-x(TiO_2,\;CaTiO_3,\;SrTiO_3)$ ceramics were dominated with an addition of $CaTiO_3\;and\;SrTiO_3$. The dielectric constant $(\varepsilon_r)$, quality factor $(Q{\times}f_r)$ and temperature coefficient of the resonant frequency $(TCRF,\;\tau_f)$ of the $(1-x)Mg_4Ta_2O_9-x(TiO_2,\;CaTiO_3,\;SrTiO_3)$ ceramics were $12.96\sim70.98,\;5,132\sim186,410GHZ$ and $-35.82\sim+75.96ppm/^{\circ}C$, respectively, and depend on x and addition materials.

The Effect of $V_2O_5$ Addition on the Microwave Dielectric Properties of $Zn_3Nb_2O_8$ Ceramics ($V_2O_5$ 첨가가 $Zn_3Nb_2O_8$ 마이크로파 유전체 특성에 미치는 영향)

  • Yun, Ho-Byung;Lee, Tae-Kun;Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.17 no.1
    • /
    • pp.24-32
    • /
    • 2006
  • The microwave dielectric properties of $Zn_3Nb_2O_8\;with\;V_2O_5$ addition were investigated. The addition of $V_2O_5$ enhanced the sinterability of $Zn_3Nb_2O_8$, which resulted in high density of $Zn_3Nb_2O_8$ ceramic greater than 95% of the theoretical value when sintered at $900^{\circ}C$ for 4 hours. X-ray diffraction analysis of sintered $Zn_3Nb_2O_8$ ceramic showed no second phase with $V_2O_5$ addition. Dielectric permittivity(${\varepsilon}_r$) and quality factor($Q{\times}f$) varied with both density at different sintering temperature and $V_2O_5$ addition. Dielectric permittivity, quality factor and temperature coefficient($T_{cf}$) of the two mole of $V_2O_5\;added\;Zn_3Nb_2O_8$ that was sintered at $900^{\circ}C$ were 21.4, 40,000, $-54ppm/^{\circ}C$, respectively.

Microwave dielectric properties of $ZnNb_2O_6$ ceramics with zinc-borosilicate glass frit (Zinc-borosilicate glass frit 첨가에 따른 $ZnNb_2O_6$ 세라믹스의 마이크로파 유전 특성)

  • Yoon, Sang-Ok;Kwon, Hyeok-Jung;Kim, Kwan-Soo;Lee, Joo-Young;Shim, Sang-Heung;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.292-293
    • /
    • 2006
  • $ZnNb_2O_6$ ceramics were sintered under the presence of zinc-borosilicate(ZBS) glass and resultant microwave dielectric properties were investigated with a view to applying the composition to LTCC technology. The addition of 10~30 wt% ZBS glass ensured successful sintering below $900^{\circ}C$. In general, increased addition of ZBS glass increased sinterability but it decreased the dielectric properties significantly due to the formation of an excessive liquid and second phases. The sintered $ZnNb_2O_6$ ceramics at $900^{\circ}C$ with 25 wt% ZBS glass demonstrated 15.8 in dielectric constant(${\varepsilon}_r$), 5,400 in quality factor($Q{\times}f_0$), and $-98\;ppm/^{\circ}C$ in temperature coefficient of resonant frequency(${\tau}_f$).

  • PDF

Sinterability and microwave dielectric properties of $Zr1-x(Zn_{1/3}Nb_{2/3})xTiO_4$ system ceramics sintered at low temperature (저온소결용 $Zr1-x(Zn_{1/3}Nb_{2/3})xTiO_4$ 세라믹스의 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Lee, Joo-Young;Kim, Nam-Hyeop;Lee, Joo-Sik;Shim, Sang-Heung;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.208-209
    • /
    • 2006
  • Sinterability and microwave dielectric properties of the $Zr1-x(Zn_{1/3}Nb_{2/3})xTiO_4$(x=4, 6) system ceramics have been investigated as functions of zinc-borosilicate(ZBS) glass contents and amount of $Zn_{1/3}Nb_{2/3}O_2$ substitution with a view to applying the composition to LTCC technology. The addition of 25 wt% ZBS glass ensured successful sintering below $925^{\circ}C$. With increasing ZBS glass and $Zn_{1/3}Nb_{2/3}O_2$ contents increased dielectric constant and sinterability but addition ZBS glass decreased the quality factor significantly due to the formation of an excessive liquid and second phases. The sintered $Zr4(Zn_{1/3}Nb_{2/3})6TiO_4$ system ceramics at $925^{\circ}C$ with 25 wt% ZBS glass demonstrated 27.7 in dielectric constant (${\varepsilon}_r$), 3,850 m quality factor($Q{\times}f_0$), and +6 ppm/$^{\circ}C$ in temperature coefficient of resonant frequency($\tau_f$).

  • PDF

The Microwave Dielectric Properties of 0.16BaO-0.15(Nd0.87Bi0.13)2O3-0.69TiO2 Ceramics as a Function of Glass Content (0.16BaO-0.15(Nd0.87Bi0.13)2O3-0.69TiO2 세라믹스의 glass 첨가에 따른 마이크로파 유전특성)

  • 윤중락;이헌용;이석원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.788-793
    • /
    • 2002
  • The glass-electroceramics were composed of glass composition(CaO, $SiO_2$, $B_2$ $O_3$) and electroceramic composition(BaO, N $d_2$ $O_3$, B $i_2$ $O_3$ and Ti $O_2$) Their dielectric properties have been investigated as a function of sintering temperature and glass contents. In the ceramics composed of 0.16BaO-0.15(N $d_{0.87}$,B $i_{0.13}$)$_2$ $O_3$-0.69Ti $O_2$with glass [EG-2782] 3wt% addition and sintered at 108$0^{\circ}C$ for 2h, we could obtain microwave properties of dielectric constant $\varepsilon$$_{r}$ = 80.1, quality factor Q $\times$f = 810(at 3.5 GHz) and temperature coefficient of resonant frequency $\tau$$_{f}$ = -1.3 [ppm/$^{\circ}C$]. These experimental results show that dielectric constant and temperature coefficient of resonant frequency could be estimated by empirical equations involving the rule of mixture.e.

The Microwave Dielectric Properties of $ZnNb_2O_{6}$ Ceramics with Sintering Temperature and CuO Addition (소결온도와 CuO 첨가에 따른 $ZnNb_2O_{6}$ 세라믹스의 마이크로파 유전특성)

  • 김정훈;김지헌;배선기;이성갑;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.347-351
    • /
    • 2004
  • The $ZnNb_2O_{6}$ ceramics with CuO(1, 3, 5wt%) were prepared by the conventional mixed oxide method. The ceramics were sintered at the temperature of $950^{\circ}C$$1075^{\circ}C$ for 3hr in air The structural properties and the microwave dielectric properties of $ZnNb_2O_{6}$ ceramics were investigated with sintering temperature and the addition of CuO. Increasing the addition of CuO, the peak of second phase($Cu_3Nb_2O_{8}$) was increased. The grain size of the $ZnNb_2O_{6}$ ceramics with CuO was increased with CuO addition at same temperature. The dielectric constant of $ZnNb_2O_{6}$ ceramics with CuO was increased with sintering temperature and CuO addition. While the quality factor of the $ZnNb_2O_{6}$ ceramics with lwt% CuO depended on sinterability, the quality factor of $ZnNb_2O_{6}$ with 3wt% and 5wt% CuO depended on second Phase due to the CuO addition. The optimum dielectric Properties of $\varepsilon$$_{r}$ = 21.73 Q${\times}$f = 19,276 were obtained from the condition of 3wt% CuO addition and sintering temperature of $1025^{\circ}C$(3hr).

Evaluation of Groundwater Quality Using Factor Aanlyses and Agrochemicals in an Agricultural Area (요인분석과 농약성분 특성에 의한 농업지역의 지하수 수질 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Kim, Kwang-Sung;Cheong, Jae-Yeol;Ryu, Sang-Min;Kim, Deuk-Ho;Kim, Hyun-Ji
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.217-234
    • /
    • 2009
  • This study characterized groundwater quality and the influence of agrochemicals in a part of Ilgwang-Myeon agricultural area in Gijang-Gun, Busan Metropolitan City, using factor analyses. From the 1st, 2nd, and 3rd analyses of groundwater samples, the mean concentrations of $Ca^{2+}$, $Na^+$, $Mg^{2+}$, $K^+$, $Zn^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Al^{3+}$, $NO_3\;^-$, $Cl^-$, $SO_4\;^{2-}$, $F^-$, and $SiO_2$ were higher in the 2nd analysis than the other analyses. Pesticide carbofuran and herbicide alachlor were detected at the wells more than a half of all the wells in the 2nd analysis but not in the 4th analysis. This fact may be explained by that a higher precipitation induced higher infiltration rate of contaminants into groundwater during the 2nd survey. According to R- and Q-mode factor analyses, and chemical composition, inorganic constituents excepting $SiO_2$, $HC0_3\;^-$-, and $F^-$ may be influenced by anthropogenic sources (manures, synthetic fertilizers, and domestic wastes), seawater as well as water-mineral interaction. A typical indicator of groundwater contamination, nitrate, exceeds around 4-5 times over the Korean standard for drinking water. Additionally, the influence of seawater diminishes from the seaside to inland.

Microwave Dielectric Properties of Bi2O3-TiO2 Composite Ceramics

  • Axelsson, Anna-karin;Sebastian, Maladil;McN Alford, Neil
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.340-345
    • /
    • 2003
  • B $i_2$ $O_3$-Ti $O_2$ composite dielectric ceramics have been prepared by a conventional solid state ceramic route. The composite ceramics were prepared with starting materials of different origin and the microwave dielectric properties were investigated. The sintered ceramics were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray microanalysis, Raman and microwave methods. Structural and microstructural analyses identified two separate phases: Ti $O_2$(rutile) and B $i_2$ $Ti_4$0$_{11}$. The separate grains of titania and bismuth titanate were distributed uniformly in the ceramic matrix. The composition 0.88Ti $O_2$-0.12B $i_2$ $Ti_4$ $O_{11}$ was found to have a Q$\times$f of 9300 GHz (measured at a frequency of 3.9 GHz), a temperature coefficient of frequency, $\tau$$_{cf}$ near zero and a high relative permittivity, $\varepsilon$r of 83. The microwave dielectric properties were measured down to 20$^{\circ}$K K. The quality factor increased on cooling the ceramic samples.les.