• Title/Summary/Keyword: Quality control phantom

Search Result 101, Processing Time 0.021 seconds

A Study on the Fabrication and Comparison of the Phantom for Computed Tomography Image Quality Measurements Using Three-Dimensions Printing Technology (삼차원 프린팅 기술을 이용한 전산화단층영상 품질 측정용 팬텀 제작 및 비교 연구)

  • Yoon, Myeong-Seong;Hong, Soon-Min;Heo, Yeong-Cheol;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.595-602
    • /
    • 2018
  • Quality control (QC) of Computed Tomography (CT) devices is based on image quality measurement on AAPM CT phantom which is a standard phantom. Although it is possible to control the accuracy of the CT apparatus, it is expensive and has a disadvantage of low penetration rate. Therefore, in this study, we make image quality measurement phantom at low cost using FFF (Fused Filament Fabrication) type three-dimensional printer and try to analyze the usefulness, compare it with existing standard phantom. To print a phantom, We used three-dimensional printer of the FFF system and PLA (Poly Lactic Acid, density: $1.24g/cm^3$) filament, and the CT device of 64 MDCT (Aquilion CX, Toshiba, Japan). In addition, we printed a phantom using three-dimensional printer after design using various tool based on existing standard phantom. For image quality evaluation, AAPM CT phantom and self-generated phantom were measured 10 times for each block. The measured data were analyzed for significance using the Mannwhiteney U-test of SPSS (Version 22.0, SPSS, Chicago, IL, USA). As a result of the analysis, phantom fabricated with three-dimensional printer and standard phantom showed no significant difference (p>0.05). Furthermore, we confirmed that image quality measurement performance of a phantom using three-dimensional printer is similar to the existing standard phantom. In conclusion, we confirmed the possibility of low cost phantom fabrication using three dimensional printer.

Usefulness Evaluation of Mammographic Image (유방촬영 영상의 유용성 평가)

  • Kang, Se-Ssik
    • Journal of radiological science and technology
    • /
    • v.27 no.4
    • /
    • pp.49-54
    • /
    • 2004
  • Purpose : To valuate the usefulness of mammographic image by using phantom 1,2 to controls the enhancement of image quality. Procedure : Set up same equipments for experiment (all the qualification must be the same). Control group and 4 other experiment the developing mammographys by using the image system with film/intensifying screen and distribute marks on each test objects of phantom 1, 2. Result : The results of the experiment using phantom 1, 2 on control group and 4 others are : 1. phantom 1's valuation with 3 items. - control group received 29 out of 32 - group A received 25 - group B received 16 - group C received 11.5 - group D received 28.5 The evaluation shows that the system has proved to display excellent image quality except group B and C. 2. Phantom 2's valuation with 4 items. - control group received 38 out of 38 - group A received 30 - group B received 16 - group C received 12.5 - group D received 38 Even with phantom 2, group B and C has displayed poor image quality. Conclusion : Both experiments using phantom 1 and 2 have shown that the most strong factor that control and influence the image quality are the filming equipments. Especially, the developing system has most powerful influence above all.

  • PDF

An Intercomparison of Counting Efficiency and the Performance of Two Whole-Body Counters According to the Type of Phantom

  • Pak, Minjung;Yoo, Jaeryong;Ha, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.274-281
    • /
    • 2016
  • Background: Whole-body counters are widely used to evaluate internal contamination of the internal presence of gamma-emitting radionuclides. In internal dosimetry, it is a basic requirement that quality control procedures be applied to verify the reliability of the measured results. The implementation of intercomparison programs plays an important role in quality control, and the accuracy of the calibration and the reliability of the results should be verified through intercomparison. In this study, we evaluated the reliability of 2 whole-body counting systems using 2 calibration methods. Materials and Methods: In this study, 2 whole-body counters were calibrated using a reference male bottle manikin absorption (BOMAB) phantom and a Radiation Management Corporation (RMC-II) phantom. The reliability of the whole-body counting systems was evaluated by performing an intercomparison with International Atomic Energy Agencyto assess counting efficiency according to the type of the phantom. Results and Discussion: In the analysis of counting efficiency using the BOMAB phantom, the performance criteria of the counters were satisfied. The relative bias of activity for all radionuclides was -0.16 to 0.01 in the Fastscan and -0.01 to 0.03 in the Accuscan. However, when counting efficiency was analyzed using the RMC- II phantom, the relative bias of $^{241}Am$ activity was -0.49 in the Fastscan and 0.55 in the Accuscan, indicating that its performance criteria was not satisfactory. Conclusion: The intercomparison process demonstrated the reliability of whole-body counting systems calibrated with a BOMAB phantom. However, when the RMC-II phantom was used, the accuracy of measurements decreased for low-energy nuclides. Therefore, it appears that the RMC-II phantom should only be used for efficiency calibration for high-energy nuclides. Moreover, a novel phantom capable of matching the efficiency of the BOMAB phantom in low-energy nuclides should be developed.

Evaluation of Image Quality according to Insert Position and Thickness Change by Fabricating Modified ACR Phantom in Mammography (유방엑스선검사에서의 변형된 ACR 팬텀 제작을 통한 모조병소의 위치와 두께 변화에 따른 영상의 품질 평가)

  • Uhm, Hyon-Ja;Park, Chanrok
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • To maintain improved image quality in mammography, the quality control process is performed using the ACR (American college of radiology) phantom. In addition, many studied were performed by fabricating the customized breast phantom to provide more information in mammography. Thus, the purpose of this study was to evaluate the image quality by designing the modified ACR phantoms. The five modified acrlylic ACR phantoms were designed by considering insert position and phantom thickness. The phantoms were consisted of 4.5, 3.0, and 1.5 cm in terms of phantom thickness, and 3.0, 2.0, and 0.5 cm in terms of insert position, respectively. The acquired images were evaluated by PSNR (peak signal to noise ratio), RMSE (root mean square error), CC (correlation coefficient), CNR (contrast to noise ratio), and COV (coefficient of variation). Based on the similarity analysis, the result is suitable between conventional and new designed phantoms. In addition, the CNR and COV results in terms of insert position showed that image quality for 0.5 cm was 2.3 and 27.4% improved compared with 2 and 3 cm, respectively. According to phantom thickness results, the CNR result for 1.5 cm and COV result for 4.5 cm were 50.1 and 62.7% improved compared with that those conditions. In conclusion, we confirmed that the image quality depends on the breast size and thickness through modified ACR phantom study.

Phantom Image Evaluations Depending on the Quality Control-Uniformity of Brain Perfusion SPECT Scanner (뇌 관류 SPECT 스캐너의 정도관리-균일도에 따른 팬텀 영상 평가)

  • Jung-Soo, Kim;Hyun-Jin, Yang;Joon, Kim;Chan-Rok, Park
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • To have highly reliable diagnostic performance of it, this study comparatively analyzed spatial resolution of SPECT images and interrelationship depending on the changes of system uniformity of ga㎜a camera through phantom analysis. This study chose 6 kinds of results from quality control (uniformity) of triple head SPECT scanner operated in an university hospital in Seoul for six months. Then, study measured spatial resolutions (FWHM) of the images restructured by injecting radiopharmaceuticals to Jaszczak phantom, and doing SPECT scanning under the same conditions as clinical ones using the analytical program (image J). Quality controls performed by the experimental institution showed that differential uniformity of UFOV ranged from 2.76% to 7.61% (4.46±2.07), and integral uniformity of UFOV ranged from 1.98% to 5.42% (3.01±1.43). Meanwhile, Quantitative analysis evaluations of phantom images depending on the changes of uniformity of SPECT scanner detector showed that as the uniformity values of UFOV and CFOV decreased, FWHM values of phantom images decreased from 8.5 ㎜ to 5.8 ㎜. That is, it was quantitatively identified that the higher uniformity of detector is, the better spatial resolution of images gets (P<0.05). It is very important to perform continuous and consistent quality control of the nuclear medicinal system, and users should be clearly conscious of it.

Establishment of Quality Control System for Angiographic Unit (IVR장치의 성능 평가 기준 개발)

  • Kang, Byung-Sam;Son, Jin-Hyun;Kim, Seung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.236-244
    • /
    • 2011
  • Recently, the number of interventional procedures has increased dramatically as an alternative of invasive surgical procedure. The need for the quality control program of the angiographic units has also increased, because of concerns about the increased patient dose and the importance of image quality of angiographic units for the successful procedures. The purpose of this study was to propose an optimal guideline for the quality control program of the angiographic units. We reviewed domestic and international standards about medical imaging system and we evaluated the quality of 61 angiographic units in Korea with the use of NEMA 21 phantom. According to the results of our study, we propose a guideline for the quality control program of the angiographic units. Quality control program includes tube voltage test, tube current test, HVL test, image-field geometry test, spatial resolution test, low-contrast iodine detectability test, wire resolution test, phantom entrance dose test. Proposed reference levels are as follows: PAE < $\pm$ 10% in tube voltage test, PAE < $\pm$ 15% in tube current test, minimum 2.3 mmAl at 80 kVp in HVL test, minimum 'acceptable' level at image-field geometry test, 0.8 lp/mm for detector size of 34-40cm, 1.0 lp/mm for detector size of 28-33cm, 1.2 lp/mm for detector size of 22-27cm in spatial resolution test, minimum 200mg/cc in low contrast iodine detectability test, phantom entrance dose should be under 10R/min, 0.012 inch wire should be seen at static wire resolution test, and 0.022 inch wire should be seen at moving wire resolution test.

Quality Evaluation of Ultrasonographic Equipment Using an ATS-539 Multipurpose Phantom in Veterinary Medicine

  • Cho, Young-kwon;Lee, Youngjin;Lee, Kichang
    • Journal of Veterinary Clinics
    • /
    • v.39 no.3
    • /
    • pp.114-120
    • /
    • 2022
  • The purpose of this study is to examine the status of quality control using multipurpose phantom of ultrasound equipment used in hospital of veterinary college in South Korea by using ATS-539 multipurpose phantom so as to examine quantitative and objective new image evaluation method. Specialists discussed and analyzed multipurpose phantom images acquired by using convex transducer of 10 ultrasound imaging devices, currently used in 9 veterinary colleges, at 4.0-6.0 MHz. Total 8 items that can be measured with ATS-539 multipurpose phantom including dead zone, vertical and horizontal measurement, axial/lateral resolution, sensitivity, focal zone, functional resolution and gray scale/dynamic range were evaluated. For qualitative evaluation, valid decisions were made based on dead zone, axial/lateral resolution, and gray scale/dynamic range which are resolution index, and coefficient of variation (COV) and blind referenceless image spatial quality evaluator (BRISQUE) were found to increase objectivity. As a result of experiment, all the targeted ultrasonic devices were found appropriate from qualitative evaluation items of dead zone, axial/lateral resolution, and gray scale/dynamic range. In other evaluation items, they were found to be appropriate from focal zone and vertical measurement of quantitative evaluation while inappropriate from horizontal measurement, sensitivity, and functional resolution. COV value was 0.12 ± 0.04, and BRISQUE value was 47.77 ± 2.77, both analysis results show that the noise level of all ultrasonic devices was located within tolerance range. Upon image examination using ATS-539 multipurpose phantom, they were 100% appropriate with inspection standards of dead zone, axial/lateral resolution, and gray scale/dynamic range, and besides, focal zone and functional resolution can be used as evaluation items. In the field of veterinary medicine, 8 standard items using ATS-539 multipurpose phantom and image evaluation items using COV and BRISQUE can be used as standards for quality control of ultrasonography machine.

Evaluation of Usefulness and Fabrication of Femur Phantom on Quality Control of Bone Mineral Density Using 3D Printing Technology (3D 프린팅기술을 이용한 골밀도 정도관리 대퇴골 팬텀 제작 및 유용성 평가)

  • Da-Yeong, Hong;Jeong, Lee;Jun-Ho, Lee;Jae-Won, Mun;Han-Saem, Oh;Yu-Won, Jeong;Seong-Hyun, Jin;Jong-Min, Hong;In-Ja, Lee
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • As the demand for bone mineral density testing increases in Korea, which is close to an aging society, it is necessary to evaluate the repeatability of equipment such as femur phantom other than l-spine for more accurate diagnosis. However, in clinical practice, it is often not possible to proceed such evaluation due to insufficient quality control conditions. Therefore, this study is to evaluate the usefulness of the femur phantom after fabricating the same using 3D printing technology. The femur phantom was output using GlowFill filament and FDM 3D printing type. Each phantom was repeatedly scaned 20 times to compare whether the existing l-spine phantom and the fabricated femur phantom were suitable as a phantom for quality control. Each time the seven researchers took three times, the location of the femur phantom was readjusted, and then scanned to confirm the error between the researchers. As a result of conducting repeatability evaluation using femur phantom, the coefficient of variation rate was 2%, which was within the minimum precision tolerance of 2.5%. The reproducibility between the researcher was also found to be suitable as the average coefficient of variation was 0.031 and the coefficient of variation rate was 3.1%, which was within the minimum precision error range of 5%. In conclusion, it is considered that the prospective attitude and usefulness of the femur phantom fabricated by 3D printing in clinical practice will be sufficient.

Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT (PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가)

  • Choong-Woon Lee;Yeon-Wook You;Jong-Woon Mun;Yun-Cheol Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF