• Title/Summary/Keyword: Quality and Process Performance Objective

Search Result 136, Processing Time 0.03 seconds

A Study on the Method of Optimizing the Test Order of Explosive Detection System Using Analytic Hierarchy Process and Objective Rating (계층분석방법 및 객관적평가법을 활용한 폭발물탐지장비 시험순서 최적화 방법에 관한 연구)

  • Sun-Ju, Won;Hyun Su, Sim;Yong Soo, Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.793-810
    • /
    • 2022
  • Purpose: As improving the search performance of aviation security equipment is considered essential, this study proposes the need for research on how to find an optimized test sequence that can reduce test time and operator power during the search function test of explosive detection systems. We derive the weights and work difficulty adjustment factor required to find the optimized test order. Methods: First, after setting the test factors, the time of each test and the difficulty scale determined by the worker who performed the test directly were used to derive weights. Second, the work difficulty adjustment coefficient was determined by combining the basic weight adjustment factor and corresponding to the body part used by the test using objective rating. Then the final standard time was derived by calculating the additional weights for the changeability of the test factors. Results: The order in which the final standard time is minimized when 50 tests are performed was defined as the optimized order. 50 tests should be conducted without duplication and the optimal order of tests was obtained when compared to previously numbered tests. As a result of minimizing the total standard time by using Excel's solver parameters, it was reduced by 379.14 seconds, about 6.32 minutes. Conclusion: We tried to express it in mathematical formulas to propose a method for setting an optimized test sequence even when testing is performed on other aviation security equipment. As a result, the optimal test order was derived from the operator's point of view, and it was demonstrated by minimizing the total standard time.

Establishing Method of RAM Objective Considering Combat Readiness and Field Data of Similarity Equipment (전투준비태세 및 유사장비 운용자료를 활용한 RAM 목표 값 설정방법에 관한 연구)

  • Kim, Kyung-Yong;Bae, Suk-Joo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.127-134
    • /
    • 2009
  • RAM(Reliability, Availability, Maintainability) is important performance factor to keep combat readiness and optimize operational and maintenance cost of weapon systems. This paper discusses the method to establish RAM for combat readiness by using field failure data from similarity equipments. Operational availability is estimated from a binomial distribution function of user's operational conditions such as combat readiness preservation probability, operational rate, operational availability and total number of equipment. Reliability and maintainability is estimated from field failure data from similarity equipment to accomplish operational availability. The effectiveness of established RAM is verified through analysis of combat readiness preservation probability and mission reliability. A case study of weapon system illustrates the process of the proposed method.

A Case Study of Quality Assurance and Control for the Soil Environmental Assessment in Abandoned Mine (광산지역 토양정밀조사 정도관리(QA/QC) 사례 연구)

  • Ji, Won Hyun;Kim, Jong Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.134-141
    • /
    • 2014
  • A testing inspection is one of the important in the industry, owing to determine the reliability and directivity of testing inspection results. Therefore, the quality assurance and quality control (QA/QC) work which performed by personnel not directly in the inventory compilation development, in testing inspection must be thoroughly considered. Some agencies for environmental test inspection, they sometimes misunderstood that the QA/QC was ended with proficiency testing performance and on-site assessment by a director. Thus, results were often calculated without QA/QC work by self manual when conducting test. The objective of this study was to improve reliability of testing and inspection agency through the QA/QC case study which basically performed to raising reliability of testing and inspection agency. In this study, it increased reliability of result by verifying calibration curve (IC, ICV, CCV), blank, accuracy (LCS, MS) and precision as QA/QC performance, while performing investigation of soil contamination in mining areas. This study suggests that reliability establishing method of test result and management method of analysis process, through the QA/QC instance of testing agency.

Constellation Multi-Objective Optimization Design Based on QoS and Network Stability in LEO Satellite Broadband Networks

  • Yan, Dawei;You, Peng;Liu, Cong;Yong, Shaowei;Guan, Dongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1260-1283
    • /
    • 2019
  • Low earth orbit (LEO) satellite broadband network is a crucial part of the space information network. LEO satellite constellation design is a top-level design, which plays a decisive role in the overall performance of the LEO satellite network. However, the existing works on constellation design mainly focus on the coverage criterion and rarely take network performance into the design process. In this article, we develop a unified framework for constellation optimization design in LEO satellite broadband networks. Several design criteria including network performance and coverage capability are combined into the design process. Firstly, the quality of service (QoS) metrics is presented to evaluate the performance of the LEO satellite broadband network. Also, we propose a network stability model for the rapid change of the satellite network topology. Besides, a mathematical model of constellation optimization design is formulated by considering the network cost-efficiency and stability. Then, an optimization algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) is provided for the problem of constellation design. Finally, the proposed method is further evaluated through numerical simulations. Simulation results validate the proposed method and show that it is an efficient and effective approach for solving the problem of constellation design in LEO satellite broadband networks.

Shape Decision of the Stainless Steel at the Skin Pass Mill (스테인리스 냉연공정에서 강판의 형상판정)

  • Hur, Yone-Gi;Choi, Young-Kiu
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1047-1048
    • /
    • 2008
  • The objective of this paper is to build a decision method of the shape quality for the stainless steel and ensure reducibility of working-load for next rolling process. The criterion of the shape quality is derived from the customer needs, and Automatic Shape Decision System is implemented in SPM (Skin Pass Mill). The methods of shape decision are based on curve fitting and frequency analysis and so on. The Field Test with concerned customers is successful. The performance of right decision is 99% and the claims from the customer have been largely reduced.

  • PDF

Identifying Causes of Industrial Process Faults Using Nonlinear Statistical Approach (공정 이상원인의 비선형 통계적 방법을 통한 진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3779-3784
    • /
    • 2012
  • Real-time process monitoring and diagnosis of industrial processes is one of important operational tasks for quality and safety reasons. The objective of fault diagnosis or identification is to find process variables responsible for causing a specific fault in the process. This helps process operators to investigate root causes more effectively. This work assesses the applicability of combining a nonlinear statistical technique of kernel Fisher discriminant analysis with a preprocessing method as a tool of on-line fault identification. To compare its performance to existing linear principal component analysis (PCA) identification scheme, a case study on a benchmark process was performed to show that the fault identification scheme produced more reliable diagnosis results than linear method.

Audio /Speech Codec Using Variable Delay MDCT/IMDCT (가변 지연 MDCT/IMDCT를 이용한 오디오/음성 코덱)

  • Sangkil Lee;In-Sung Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.69-76
    • /
    • 2023
  • A high-quality audio/voice codec using the MDCT/IMDCT process can perfectly restore the current frame through an overlap-add process with the previous frame. In the overlap-add process, an algorithm delay equal to the frame length occurs. In this paper, we propose a MDCT/IMDCT process that reduces algorithm delay by using a variable phase shift in MDCT/IMDCT process. In this paper, a low-delay audio/speech codec was proposed by applying the low delay MDCT/IMDCT algorithm to the ITU-T standard codec G.729.1 codec. The algorithm delay in the MDCT/IMDCT process can be reduced from 20 ms to 1.25 ms. The performance of the decoded output signal of the audio/speech codec to which low-delay MDCT/IMDCT is applied is evaluated through the PESQ test, which is an objective quality test method. Despite of the reduction in transmission delay, it was confirmed that there is no difference in sound quality from the conventional method.

A New Technology for Optimization of Bead Height Using ANN

  • Kim, Ill-Soo;Son, Joon-Sik;Sung, Back-Sub;Lee, Chang-Woo;Cha, Yong-Hoon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.208-213
    • /
    • 2001
  • Objective of this paper is to develop a new approach involving the use of an Artificial Neural Network(ANN) and multiple regression methods in the prediction of process parameters on bead height for GMA welding process. Using a series of robotic are welding, multi-pass butt welds carried out in order to verify the performance of the neural network estimator and multiple regression methods. To verify the developed system, the design parameters of the neural network estimator are selected from an estimation error analysis. The experimental results show that the proposed models can predict the bead height with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

Genetic-Based Combinatorial Optimization Method for Design of Rolling Element Bearing (구름 베어링 설계를 위한 유전 알고리듬 기반 조합형 최적설계 방법)

  • 윤기찬;최동훈;박창남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.166-171
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design for the application-based exclusive rolling element bearings, this study propose design methodologies by using a genetic-based combinatorial optimization. By the presence of discrete variables such as the number of rolling element (standard component) and by the engineering point of views, the design problem of the rolling element bearing can be characterized by the combinatorial optimization problem as a fully discrete optimization. A genetic algorithm is used to efficiently find a set of the optimum discrete design values from the pre-defined variable sets. To effectively deal with the design constraints and the multi-objective problem, a ranking penalty method is suggested for constructing a fitness function in the genetic-based combinatorial optimization. To evaluate the proposed design method, a robust performance analyzer of ball bearing based on quasi-static analysis is developed and the computer program is applied to some design problems, 1) maximize fatigue life, 2) maximize stiffness, 3) maximize fatigue life and stiffness, of a angular contact ball bearing. Optimum design results are demonstrate the effectiveness of the design method suggested in this study. It believed that the proposed methodologies can be effectively applied to other multi-objective discrete optimization problems.

  • PDF

Hydraulic Shock Load Response of Activated Sludge Process (활성슬러지공정의 수리학적 충격부하 반응)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae;Cho, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF