• Title/Summary/Keyword: Quality Design Simulation

Search Result 871, Processing Time 0.03 seconds

A Study on the Optimal All-IP Network Design for Adopting IPTV Traffic (All-IP 네트워크에서 IPTV 트래픽 수용을 위한 최적의 설계 방안 연구)

  • Kim, Hyoung-Soo;Cho, Sung-Soo;Seol, Soon-Uk;Jun, Yun-Chul
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.68-71
    • /
    • 2009
  • All-IP network requires change of the existing IP network engineering methods as the convergence service market between communication and broadcasting industries using IP network is growing rapidly. Especially the video services like IPTV require more strict transmission quality and higher bandwidth than the existing data services. So it is difficult to design All-IP network by the over-provisioning method which used to be used for the existing IP network design. It also requires a heavy investment which becomes one of big obstacles to the IPTV service expansion. In order to reduce the investment costs, it is required to design an optimized network by maximizing the utilization of the network resources and at the same time maintaining the customer satisfaction in terms of service quality. In this paper, we first analyze the effects of IPTV traffic on the existing internet. Then we compare two traffic engineering technologies, which are dimensioning without admission control and dimensioning with admission control, on the All-IP network design by simulation. Finally, we suggest cost effectiveness of traffic engineering technologies for designing the All-IP network.

  • PDF

Flood Simulation by using High Quality Geo-spatial Information (고품질 지형공간정보를 이용한 홍수 시뮬레이션)

  • Lee, Hyun-Jik;Hong, Sung-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.97-104
    • /
    • 2010
  • The important factors in a flood simulation are hydrologic data (such as the rainfall and intensity), a threedimensional terrain model, and the hydrologic inundation calculation matrix. Should any of these factors lack accuracy, flood prediction data becomes unreliable and imprecise. The three-dimensional terrain model is constructed based on existing digital maps, current map updates, and airborne LiDAR data. This research analyzes and offers ways to improve the model's accuracy by comparing flood weakness areas selected according to the existing data on flood locations and design frequency.

Simulations of Effects of Variable Conductance Throttle Valve on the Characteristics of High Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • Thin film electronic devices which brought the current mobile environment could be fabricated only under the high quality vacuum conditions provided by high vacuum systems. Especially for the development of advanced thin film devices, constant high quality vacuum as the deposition pressure is definitely needed. For this purpose, the variable conductance throttle valves were employed to the high vacuum system. In this study, the effects of throttle valve applications on vacuum characteristics were simulated to obtain the optimum design modelling of variable conductance of high vacuum system. Commercial simulator of vacuum system, $VacSim^{(multi)}$, was used on this investigation. Reliability of employed simulator was verified by the simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure of below $10^{-3}torr$. Simulation results were plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

Study on a New Response Function Estimation Method Using Neural Network (신경망 기법을 이용한 새로운 반응함수 추정 방법에 관한 연구)

  • Hoang, Thanh-Tra;Le, Tuan-Ho;Shin, Sangmun;Jeong, Woo-Sik;Kim, Chul-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.2
    • /
    • pp.249-260
    • /
    • 2013
  • Purpose: The main objective of this paper is to propose an RD method by developing a neural network (NN)-based estimation approach in order to provide an alternative aspect of response surface methodology (RSM). Methods: A specific modeling procedure for integrating NN principles into response function estimations is identified in order to estimate functional relationships between input factors and output responses. Finally, a comparative study based on simulation is performed as verification purposes. Results: This simulation study demonstrates that the proposed NN-based RD method provides better optimal solutions than RSM. Conclusion: The proposed NN-based RD approach can be a potential alternative method to utilize many RD problems in competitive manufacturing nowadays.

Characteristic Measurement for Ready-Deployed Optical Cable and Simulation for SDH and WDM System Existing Conditions (기포설된 광케이블 특성측정과 이 선로조건에 대한 SDH 및 DWDM 광전송장치 전송특성측정과 시뮬레이션)

  • 이성원;김영범
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.121-138
    • /
    • 2001
  • Due to large demand for high speed and great capacity for data transfer, WDM, which uses the wavelength division multiplexing technique, is known as alternative way to satisfy those demand for its flexible network operation and management, easy network expansion with existing networks, and enhancement of efficient data transfer rate. For these reasons, a new high capacity WDM optical communication network plan was established. Therefore, the quality of currently deployed optical cables with 81.6 km in length should be assessed to ensure if high capacity WDM system could be implemented on existing optical cables. Two important characteristic parameters, Transfer Loss and PMD (Polarization Mode Dispersion), were measured to evaluate quality of existing optical cable. Transfer Loss was measured at 0.244 dB per kilometer, which is lower than the design standard value at 0.275 dB/km. The measured PMD value gave at 0.030ps/km, and it, therefore, satisfies the value recommended by ITU-T (International Telecommunication Union-T) of 0.5ps/km. In addition, the transfer characteristic for existing 2.5 Gbps and 10 Gbps system were measured and evaluated, and the results showed that error-free transfer is very much feasible. Computer simulation for DWDM system, which is likely be a future backbone network in Korea, to assess the transfer characteristic using the same condition employed for 2.5 Gbps and 10 Gbps was carried out as well. The simulation verified that a stable network operation and reliable service could be provided.

  • PDF

Tool Design in a Multi-stage Rectangular Cup Drawing Process with the Large Aspect Ratio by the Finite Element Analysis - Part I. Tool Design (유한요소해석을 이용한 세장비가 큰 직사각컴 다단계 성형공정의 금형설계 - Part I. 금형설계)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.144-150
    • /
    • 2001
  • Tool design is introduced in a multi-stage rectangular cup drawing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial tool design. The analysis reveals that the difference of the drawing ratio and the irregular contact condition produces non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure.

  • PDF

AC-DC Zeta Converter for Power Quality Improvement in Direct Torque Controlled PMSM Drive

  • Singh Bhim;Singh B.P.;Dwivedi Sanjeet
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.146-162
    • /
    • 2006
  • This paper deals with the analysis, design and implementation of an AC-DC Zeta converter in discontinuous current mode (DCM) of operation used for power quality improvement at AC mains in direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drives. The designed Zeta converter feeds a direct torque controlled PMSM drive system. Modeling and simulation is carried out in a standard PSIM software environment. Test results are obtained on the developed prototype Zeta converter using DSP ADMC401. The results obtained demonstrate the effectiveness of the Zeta converter in improving power quality at AC mains in the PMSM drive system.

Phase Error Accumulation Methodology for On-chip Cell Characterization (온 칩 셀 특성을 위한 위상 오차 축적 기법)

  • Kang, Chang-Soo;Im, In-Ho
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.6-11
    • /
    • 2011
  • This paper describes the design of new method of propagation delay measurement in micro and nanostructures during characterization of ASIC standard library cell. Providing more accuracy timing information about library cell (NOR, AND, XOR, etc.) to the design team we can improve a quality of timing analysis inside of ASIC design flow process. Also, this information could be very useful for semiconductor foundry team to make correction in technology process. By comparison of the propagation delay in the CMOS element and result of analog SPICE simulation, we can make assumptions about accuracy and quality of the transistor's parameters. Physical implementation of phase error accumulation method(PHEAM) can be easy integrated at the same chip as close as possible to the device under test(DUT). It was implemented as digital IP core for semiconductor manufacturing process($0.11{\mu}m$, GL130SB). Specialized method helps to observe the propagation time delay in one element of the standard-cell library with up-to picoseconds accuracy and less. Thus, the special useful solutions for VLSI schematic-to-parameters extraction (STPE), basic cell layout verification, design simulation and verification are announced.

3D FEM simulation for connector crimping process of wire harness (와이어 하네스의 커텍터 압착공정에 대한 3차원 유한요소해석)

  • Gu, S.M.;Yin, Z.H.;Park, J.K.;Choi, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.245-249
    • /
    • 2009
  • According to the increase of intelligent vehicles many automotive electric components are installed. The wire harness which connects those also increases. The crimping process for compressing the copper wire bundle into the terminal is a key process to assure the good quality of wire harness. For the case of inadequate forming condition many shape failures such as less-filling, over-filling are happen in the crimping process. Even though the quality of crimping shape is satisfactory the quality check for electrical resistance of wire harness is sometime not satisfied the qualification due to large variation of electrical resistance of wire harness under climate test. This large variation is thought to be related with the malfunction automotive electric system and caused by the internal stress of wire, which occurred during the crimping process. In this paper we develop the 3D-FEM simulation scheme and design methodology of optimum terminal shape. Also the effect of terminal shape on the residual stress is discussed.

  • PDF

A modeling and simulation for a Small-Scaled Power Quality Compensating Equipment of Electrical Railway (전기철도용 축소형 전력품질 보상설비에 대한 모델링 및 시뮬레이션)

  • Kang, Moon-Ho;Kim, Joo-Rak;Han, Moon-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.96-102
    • /
    • 2007
  • This paper presents a study on the control of a power quality compensating equipment of electrical railway built in small-scaled to preliminary research. Because this compensating equipment is very complicated power electronics system, consisting of a scott transformer as a power source, four single phase inverters interconnected with DC-link capacitors and various electrical apparatuses, multiple controllers and control algorithms with high performance and reliability are needed. The major function of the compensating equipment is to manage reactive and active powers by using the four single phase inverters, so, the main control effort is focused on the power flow control which realized through the decoupling current control of the four inverters. Overall control system is designed with object oriented and analyzed on a Simulink window. The simulation results show that the design scheme is very effective for a complicated control system and the proposed controller has good performance.