• Title/Summary/Keyword: Quality $value(Q{\times}f_0)$

Search Result 18, Processing Time 0.037 seconds

Microwave Dielectric Properties of (1-x)ZnWO4-xTiO2 Ceramics ((1-x)ZnWO4-xTiO2 세라믹스의 마이크로파 유전특성)

  • 윤상옥;김대민;심상흥;강기성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.397-403
    • /
    • 2003
  • Microwave dielectric properties of (1-x)ZnW $O_4$-xTi $O_2$ ceramic systems were investigated with calcination temperatures and Ti $O_2$ contents. The ZnW $O_4$ ceramic could be suitably sintered at 1075$^{\circ}C$ and showed the dielectric constant of 13.6, quality factor(Q$\times$ $f_{O}$value) of 22,000 and temperature coefficient of resonant frequency($\tau$$_{f}$) of -65$\pm$2ppm/$^{\circ}C$. Increasing the amount of Ti $O_2$ in the range of 0.25 to 0.45 mol, the dielectric constant and $\tau$$_{f}$ increased due to the role of Ti $O_2$ but the quality factor decreased due to the increase of phase boundaries. The 0.7ZnW $O_4$-0.3Ti $O_2$ ceramic showed the dielectric constant of 19.8, qualify factor(Q$\times$ $f_{0}$) of 20,000 and $\tau$$_{f}$ of -3$\pm$1ppm/$^{\circ}C$.>.EX>.>.>.

The Structural and Microwave Dielectric Properties of the BMT Ceramics with Sintering Temperature and BCN Composition Ratio (소결온도와 BCN 초성에 따른 BMT 세라믹스의 구조 및 마이크로파 유전특성)

  • Choe, Ui-Seon;Lee, Mun-Gi;Ryu, Gi-Won;Lee, Seong-Gap;Lee, Yeong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.305-310
    • /
    • 2002
  • The microwave dielectric properties of Ba(Mg$_{1}$3/Ta$_{2}$3/O$_3$-Ba(Co$_{1}$3/Nb$_{2}$3/O$_3$[BMT-BCN] ceramics were investigated. The specimens were prepared by the conventional mixed oxide method with the sintering temperature of 15$25^{\circ}C$~1575$^{\circ}C$. It was found that Ba(Mg$_{1}$3/Ta$_{2}$3/O$_3$[BMT] and BCN formed a solid solution with complex perovskite structure. As increasing the mole fraction of BCN, dielectric constant increased while the temperature coefficient of resonant frequency was changed from positive to negative value. The highest value of quality factor, Q$\times$f$_{0}$=138,205GHz, obtained in the 0.9BMT-0.1BCN ceramics sintered at 1575$^{\circ}C$. In the range of x$\geq$0.4, the dielectric constant was about 30. The 0.55BMT-0.45BCN ceramics sintered at 15$25^{\circ}C$ for 5 hours showed the microwave dielectric properties of $\varepsilon$$_{r}$=30.21, Q$\times$f$_{0}$=85,789GHz and $\tau$$_{f}$=2.9015ppm/$^{\circ}C$.EX>.

Microwave Dielectric Properties of $PbWO_{4}-TiO_{2}-CuO-B_{2}O_{3}$ Ceramics ($PbWO_{4}-TiO_{2}-CuO-B_{2}O_{3}$ 세라믹의 고주파 유전특성)

  • 이경호;최병훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.143-148
    • /
    • 2001
  • PbWO$_4$ can be densified at 85$0^{\circ}C$ and it shows fairy good microwave dielectric properties; dielectric constant($\varepsilon$$_{r}$) of 21.5, quality factor(Q $\times$f$_{0}$) of 37,224 GHz, and temperature coefficient of resonant frequency($\tau$/suf f/) of -31ppm/$^{\circ}C$. Due to its low sintering temperature, PbWO$_4$ can be used as a multilayered chip component at microwave frequency with high electrical performance by using high conductive electrode metals such as Ag and Cu. However, in order to use this material for microwave communication devices, the $\tau$$_{f}$ of PbWO$_4$ must be stabilized to near zero with high Q$\times$f$_{0}$. In present study, PbWO$_4$ was modified by adding TiO$_2$, B$_2$O$_3$, and CuO in order to improve the microwave dielectric properties without increasing the sintering temperature. The addition of TiO$_2$ increased the $\tau$$_{f}$ and $\varepsilon$$_{r}$, due to its high rr(200ppm/$^{\circ}C$) and $\varepsilon$$_{r}$(100). However, the addition of TiO$_2$ reduced the Q$\times$f$_{0}$ value. When the mot ratio of PbWO$_4$ and TiO$_2$ was 0.913:7.087, near zero $\tau$$_{f}$(0.2ppm/$^{\circ}C$) was obtaibed with $\varepsilon$$_{r}$=22.3, and Q$\times$f/$_{0}$=21,443GHz. With this composition, various amount of B$_2$O$_3$ and CuO were added in order to improve the quality factor. The addition, of B$_2$O$_3$ decreased the $\varepsilon$$_{r}$. However, increased Q$\times$f$_{0}$ and $\tau$$_{f}$. When 2.5 wt% of B$_2$O$_3$ was added to the 0.913PbWO$_4$-0.087TiO$_2$ ceramic, $\tau$$_{f}$ =8.2, $\varepsilon$$_{r}$=20.3, Q$\times$f$_{0}$=54784 GHz. When CuO added to the 0.913PbWO$_4$-0.087TiO$_2$ ceramic, $\tau$$_{f}$ was continuously decreased. And $\varepsilon$$_{r}$ . and Q$\times$f$_{0}$ were increased up to 1.0 wt% then decreased. At 0.1 wt% of CuO addition, the 0.913PbWO$_4$-7.087Ti0$_2$ Ceramic Showed $\varepsilon$$_{r}$=23.5, $\tau$$_{f}$=4.4ppm/$^{\circ}C$, and Q$\times$f$_{0}$=32,932 GHz.> 0/=32,932 GHz.X>=32,932 GHz.> 0/=32,932 GHz.

  • PDF

Microwave Dielectric Properties of Sr-Substituted Ba(Mg0.5W0.5)O3 Ceramics

  • Yoon, Sang-Ok;Choi, Dong-Kyu;Oh, Jun-Hyuk;Kim, Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.364-367
    • /
    • 2018
  • The phase evolution, microstructure, and microwave dielectric properties of Sr-substituted $Ba(Mg_{0.5}W_{0.5})O_3$ ceramics, i.e., $(Ba_{1-x}Sr_x)(Mg_{0.5}W_{0.5})O_3$ ($0{\leq}x{\leq}0.30$), sintered at $1700^{\circ}C$ for 1 h were investigated. All compositions showed a 1 : 1 ordered perovskite structure. In all the compositions, $BaWO_4$ was detected as the secondary phase. With increasing x in ($Ba_{1-x}Sr_x$) $(Mg_{0.5}W_{0.5})O_3$, the lattice parameter increased linearly, indicating that a substitutional solid solution occurred. All compositions exhibited a dense microstructure. The value of ${\varepsilon}_r$ increased slightly with increasing x. The value of $Q{\times}f_0$ increased with the increase in x up to x = 0.10 and reached a saturated value of about 100,000 GHz. The composition for x = 0.20, i.e., $(Ba_{0.80}Sr_{0.20})(Mg_{0.5}W_{0.5})O_3$, sintered at $1700^{\circ}C$ for 1 h exhibited superior microwave dielectric properties of ${\varepsilon}_r=19.6$, $Q{\times}f_0=99,358GHz$, and ${\tau}_f=0.0ppm/^{\circ}C$, respectively.

A Study on the Microwave Dielectric Properties of A1$_2$O$_3$ Ceramics Resonator added with Impurities (불순물 첨가에 따른 A1$_2$O$_3$ 세라믹 공진기의 마이크로파 유전특성에 관한 연구)

  • 이문기;박인길;류기윈;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.64-67
    • /
    • 1997
  • Microwave dielectric properties of A1$_2$O$_3$ ceramics resonator were investigated with impurity addition. Increasing the contents of Bi$_2$O$_3$Q-value and Q $\times$ f were increased. In the specimen with the content of Bi$_2$O$_3$(0.3wt%), dielectric constant, quality factor and temperature coefficient of resonant frequency(TCRF, $\tau$$_{f}$) had a good values of 10.76,23,253(at 9.68[GHz]) and -39.09(ppm/$^{\circ}C$), respectively. The TCRF value was decreased with MnO$_2$ and increased with Sm$_2$O$_3$. La$_2$O$_3$.>.

  • PDF

Development of LTCC Materials for RF Module (RF 모듈용 LTCC 소재 개발)

  • 김용철;이경호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2003
  • In this study, new LTCC materials of $ZnWO_4$-LiF system were developed for the application to RF Module fabrication. Pure $ZnWO_4$ must be sintered above $1050^{\circ}C$ in order to obtain up to 98% of full density. The measured dielectric constant ($\epsilon_r$)quality factor ($Q{\times}f0$), and temperature coefficient of resonant frequency ($\tau_f$ were 15.5, 74000 GHz, and $-70ppm^{\circ}C$, respectively. LiF addition resulted in a liquid phase formation at 81$0^{\circ}C$ due to interaction between ZnWO$_4$ and LiF. Therefore, ZnWO$_4$ with 0.5∼1.5 wt% LiF could be densified at $850^{\circ}C$. In the given LiF addition range, the sintering shrinkage increased with increasing LiF content. Addition of LiF slightly lowered the dielectric constant from 15.5 to 14.2∼15 due to lower dielectric constant of LiF. Qxfo value decreased with increasing LiF content. This can be explained in terms of the interaction between LiF and $ZnWO_4$, and inhomogeneity of grain structure.

  • PDF

Fabrication of Temperature Stable LTCC with Low Loss (온도 안정성 저손실 LTCC제조)

  • 김용철;이경호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.341-345
    • /
    • 2003
  • ZnWO$_4$shows excellent frequency selectivity due to its high quality factor(Q${\times}$f) at microwave frequencies. However, in order to use ZnWO$_4$as multilayered wireless communication components, its other properties such as sintering temperature(105$0^{\circ}C$). $$\tau$_f$(-70ppm/$^{\circ}C$) and $$\varepsilon$_r$(15.5) should be modified. In present study, TiO$_2$and LiF were used to improve the microwave dielectric and sintering properties of ZnWO$_4$. TiO$_2$ additions to ZnWO$_4$changed $\tau$$_{f}$ from negative to positive value, and also increased $$\varepsilon$_r$, due to its high $$\tau$_f$(+400ppm$^{\circ}C$) and $$\varepsilon$_r$(100). At 20 mol% TiO$_2$ addition, $$\tau$_f$was controlled to near zero ppm/$^{\circ}C$ with $$\varepsilon$_r$=19.4 and Q${\times}$ f=50000GHz. However, the sintering temperature was 110$0^{\circ}C$. LiF addition to the ZnWO$_4$+TiO$_2$ mixture greatly reduced the sintering temperature from 110$0^{\circ}C$ to 85$0^{\circ}C$ due to liquid phase formation. Also LiF addition decreased the $$\tau$_f$value due to its high negative $$\tau$_f$ value. Therefore, by controlling the TiO$_2$and LiF amount. temperature stable LTCC(Low Temperature Cofired Ceramics) material with low loss in the ZnWO$_4$-TiO$_2$-LiF system could be fabricated.d.d.

  • PDF

Phenotypic and Genetic Parameters for Inosine Acid in Relation to Carcass and Meat Quality Traits in Pigs

  • Jiang, X.P.;Liu, G.Q.;Xiong, Y.Z.;Ding, J.T.;Xie, K.Z.;Zhang, J.Q.;Zuo, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.257-260
    • /
    • 2003
  • A total of 135 F2 finishing pigs (65 barrows and 69 gilts) from resource population (Large White${\times}$Meishan) were slaughtered at about 87.8 kg BW. Contents of inosine acid (IMP) and carnine (HR) in muscle were assayed by HLPC and genetic parameters for IMP content and HR content were estimated using full sibs model. There was significant sex effect on IMP content(p<0.05), $3.561{\pm}0.077mg/g$ for gilt and $3.287{\pm}0.085mg/g$ for barrow. Heritability estimates for IMP and HR content were 0.127 and 0.357, respectively. The phenotypic correlation between IMP content and HR was 0.335, pH (A) 0.024, water lose rate (WLR) -0.069, intramuscular fat (IMF) -0.214, average marbling score (MARB) -0.143, average backfat measurements (AVBF) -0.084 and average color value (CV) -0.156, respectively. The result indicated that inosine acid content in meat might be retained or slightly improved by reducing backfat depth in pig breeding.

The Effect of Mg Deficiency on the Microwave Dielectric characteristics of $Ba(Mg_{1/3}Nb_{2/3})O_3$ Ceramics (Mg 결핍에 따른 $Ba(Mg_{1/3}Nb_{2/3})O_3$ 세라믹스의 마이크로파 유전특성)

  • Paik, Jong-Hoo;Lee, Mi-Jae;Choi, Byung-Hyun;Lee, Jong-Won;Jee, Mi-Jung;Lim, Eun-Kyeong;Nahm, Sahn;Lee, Hwack-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.46-50
    • /
    • 2003
  • Crystal structure and microwave dielectric properties of $Ba(Mg_{1/3-x}Nb_{2/3})O_3$ (BMN) ceramics were investigated. $Ba(Mg_{1/3}Nb_{2/3})O_3$ has the 1:2 ordered hexagonal structure. The 1:2 ordering and relative density of specimens increased with small Mg deficiency(x). The variation of Q-value with Mg deficiency is very similar to that of 1:2 ordering and relative density. The highest $Q{\times}f_0$ achieved in this investigation is about 96,000 for $Ba(Mg_{1/3-0.02}Nb_{2/3})O_3$. The improvement of Q-value with Mg-deficiency is related to the increase of degree of ordering and relative density of the specimen.

  • PDF

The Electrical Properties of Bi2O3 Doped BaTi4O9 Ceramic Thick Film Monopole Antenna (Bi2O3가 첨가된 BaTi4O9 세라믹 후막 모노폴 안테나의 전기적 특성)

  • Jung Chun-Suk;Ahn Sang-Chul;Ahn Sung-Hun;Heo Dae-Young;Park Eun-Chul;Lee Jae-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.826-834
    • /
    • 2004
  • In this paper, we fabricated thick film monopole antennas using Bi$_2$O$_3$-doped BaTi$_4$$O_{9}$ ceramics for small size and broadband intenna. In the result, the high permittivity was fixed and the quality factor was also significantly decreased by the formation of secondary phase of Bi$_4$Ti$_3$O$_{12}$ repleced by addtion Bi. The antenna property influenced by the quality value more than the permittivity. The bandwidth of antenna was increased to 33 %. On the other hand, the gain was reduced to -4.3 dBi. Also radiation patterns were showed low dBi value by increasing of dielectric loss. Specially, Measured x-y plane radiation patterns was distorted as the dispersion of wavelength and high permittivity difference. But the result is showed execellent bandwidth because of low quality value in all formation range.nge.