• Title/Summary/Keyword: Qualitative risk management

Search Result 135, Processing Time 0.029 seconds

Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant (복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가)

  • Hee Kyung Park;Si Woo Jung;Yoo Jeong Choi;Min Chul Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.

Multi-unit risk assessment of nuclear power plants: Current status and issues

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1199-1209
    • /
    • 2018
  • After the Fukushima-Daiichi accident in 2011, the multi-unit risk, i.e., the risk due to several nuclear power plants (NPPs) in a site has become an important issue in several countries such as Korea, Canada, and China. However, the multi-unit risk has been discussed for a long time in the nuclear community before the Fukushima-Daiichi nuclear accident occurred. The regulatory authorities around the world and the international organizations had proposed requirements or guidelines to reduce the multi-unit risk. The concerns regarding the multi-unit risk can be summarized in the following three questions: How much the accident of an NPP in a site affects the safety of other NPPs in the same site? What is the total risk of a site with many NPPs? Will the risk of the simultaneous accidents at several NPPs in a site such as the Fukushima Daiichi accident be low enough? The multi-unit risk assessment (MURA) in an integrated framework is a practical approach to obtain the answers for the above questions. Even though there were few studies to assess the multi-unit risk before the Fukushima-Daiichi nuclear accident, there are still several issues to be resolved to perform the complete MURA. This article aims to provide an overview of the multi-unit risk issues and its assessment. We discuss the several critical issues in the current MURA to get useful insights regarding the multi-unit risk with the current state art of probabilistic safety assessment (PSA) technologies. Also, the qualitative answers for the above questions are addressed.

Analysis of the Common Safety Performance Management Method for the Application to the Korea Railway (국제 공통의 안전성능관리방법 국내 적용성 검토)

  • Park, Chan-Woo;Wang, Jong-Bae;Kwak, Sang-Log;Choi, Don-Bum;Kim, Min-Su
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.795-800
    • /
    • 2009
  • Railway safety is one aspect of the transport service quality delivered to passengers, employees and third parties. To improve safety by a cultural shift from a deterministic to a risk based approach, European Railway Agency (ERA) introduces common and transparent methods to monitor safety performance and set targets and establishes safety management systems. The objective of this study is to review the common safety performance management method of the ERA(European Railway Agency) for it's application to the Korea railway. For this end, the risk assessment models were developed based on the accident scenarios and domestic railway accidents had been investigated and quantitative and qualitative analyses was performed using the developed information system.

  • PDF

Simulation-Based Operational Risk Assessment (시뮬레이션 기법을 이용한 운영리스크 평가)

  • Hwang, Myung-Soo;Lee, Young-Jai
    • Journal of Information Technology Services
    • /
    • v.4 no.1
    • /
    • pp.129-139
    • /
    • 2005
  • This paper proposes a framework of Operational Risk-based Business Continuity System(ORBCS), and develops protection system for operational risk through operational risk assessment and loss distribution approach based on risk management guideline announced in the basel II. In order to find out financial operational risk, business processes of domestic bank are assorted by seven event factors and eight business activities so that we can construct the system. After we find out KRI(Key Risk Indicator) index, tasks and risks, we calculated risk possibility and expected cost by analyzing quantitative data, questionnaire and qualitative approach for AHP model from the past events. Furthermore, we can assume unexpected cost loss by using loss distribution approach presented in the basel II. Each bank can also assume expected loss distributions of operational risk by seven event factors and eight business activities. In this research, we choose loss distribution approach so that we can calculate operational risk. In order to explain number of case happened, we choose poisson distribution, log-normal distribution for loss cost, and estimate model for Monte-Carlo simulation. Through this process which is measured by operational risk. of ABC bank, we find out that loss distribution approach explains closer unexpected cost directly compared than internal measurement approach, and makes less unexpected cost loss.

A Feasibility Study on Small-sized Rental Residential Building Project through Risk Management (리스크 관리를 통한 프로젝트 타당성 검토방안에 대한 연구 -소규모 임대주택을 대상으로-)

  • Kim Sang-Chul;Park Chan-Jeong;Yoon Jun-Seon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.3 s.19
    • /
    • pp.97-105
    • /
    • 2004
  • Planning phase became very important because the construction market in Korea is often unpredictable. The existing feasibility analysis cannot fulfill its purpose in development projects because they are based on intuitive approach rather than systematic approach. The purpose of this study is to make a prototype of feasibility model to be a good investment. To build the model, first, risk factors which can be occurred in project had to be selected. Risk factors were divided into several groups in basis of characteristical risk. Economical risk factors were input on financial analysis. Then, to catch the relevance and influence of all risk factors, influence diagram and decision tree were made. Finally, sensitivity analysis was activated, then what the critical factors were, and how those factors could be solved. Through these procedures, the feasibility model that was made in this study could include both quantitative and qualitative factors. This model is expected to be used as a guide of feasibility analysis including all risk factors and is to serve systematic frame in planning and feasibility stage.

Study on Development of Automated System for Hazard Screening at Analysis (위험 선별 및 분석 통합 자동화 시스템 개발에 대한 연구)

  • 한의진;김용하;최승준;김구회;윤인섭
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.20-27
    • /
    • 2003
  • Hazard Analysis is one of the basic tasks to ensure the safety of chemical plants. However, it is an arduous, tedious, time-consuming work and requires multidisciplinary knowledge and demands considerable cognitive load from the analysts. To overcome these problems, there have been attempts to automate this work by utilizing computer technology, particularly in the area of knowledge-based technique. There is two methods in the risk assessment of Chemical plant; quantitative and qualitative risk assessment. Both of them have been applied respectively, but if the integrated method of quantitative and qualitative risk assessments is used, all of the advantage of two methods can be applied. It is difficult to carry out integrated risk management of chemical plant. Therefore, automated integration system of risk management is necessary. We developed S/W Automated System for Hazard Screening & Analysis(ASCA) and applied to practical plant. By applying ASCA to case study, we can get the information about relative ranks of equipments, variable deviation, and consequence of potential accident. In this study, we applied ASCA to the H.T.U(Hydrotreating Unit) of the process to produce aromatic material. We could know relative ranks of equipments, variable deviation of malfunction in storage tank, D-101, and consequence of potential accident using ASCA. If integrated risk management in the chemical plant is applied, we can develop the emergency plan and prevent the accident.

A Study of Risk Analysis for Underground-parking of Gas Vehicle (가스 자동차의 지하 주차 시 위험성 분석)

  • Rhie, Kwang-Won;Kim, Tae-Hun;Oh, Dong-Seok;Oh, Young-Dal;Seo, Doo-Hyoun;Shin, Soo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • We studied the risk analysis of fire and explosion caused by gas leak in underground-parking of gas vehicle. However, an entrance regulation of gas vehicles (H2/LPG/CNG etc.) to underground garages has not been enacted in Korea. Incase, a gas explodes in an underground parking garage placed in overcrowded residential area, such as an apartment, the scale of the damage would cause tremendous disaster. Faults of vehicle parts and management problems were evaluated by using the Failure mode and effect analysis (FMEA), which is a qualitative analysis method. The range of the damaged area by the explosion and the damage scale by the explosion pressure were analyzed by using the process hazard analysis software tool (PHAST). The study is expected to facilitate enactment of the regulation for the underground parking to restrict the gas vehicle.

Two-layer Investment Decision-making Using Knowledge about Investor′s Risk-preference: Model and Empirical Testing.

  • Won, Chaehwan;Kim, Chulsoo
    • Management Science and Financial Engineering
    • /
    • v.10 no.1
    • /
    • pp.25-41
    • /
    • 2004
  • There have been many studies to build a model that can help investors construct optimal portfolio. Most of the previous models, however, are based upon the path-breaking Markowitz model (1959) which is a quantitative model. One of the most important problems with that kind of quantitative model is that, in reality, most of the investors use not only quantitative, but also qualitative information when they select their optimal portfolio. Since collecting both types of information from the markets are time consuming and expensive, making a set of target assets smaller, without suffering heavy loss in the rate of return, would attract investors. To extract only desired assets among all available assets, we need knowledge that identifies investors' preference for the risk of the assets. This study suggests two-layer decision-making rules capable of identifying an investor's risk preference and an architecture applying them to a quantitative portfolio model based on risk and expected return. Our knowledge-based portfolio system is to build an investor's preference-oriented portfolio. The empirical tests using the data from Korean capital markets show the results that our model contributes significantly to the construction of a better portfolio in the perspective of an investor's benefit/cost ratio than that produced by the existing portfolio models.

Study on Measurement of Flood Risk and Forecasting Model (홍수 위험도 척도 및 예측모형 연구)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • There have been various studies on measurements of flood risk and forecasting models. For river and dam region, PDF and FVI has been proposed for measurement of flood risk and regression models have been applied for forecasting model. For Bo region unlikely river or dam region, flood risk would unexpectedly increase due to outgoing water to keep water amount under the designated risk level even the drain system could hardly manage the water amount. GFI and general linear model was proposed for flood risk measurement and forecasting model. In this paper, FVI with the consideration of duration on GFI was proposed for flood risk measurement at Bo region. General linear model was applied to the empirical data from Bo region of Nadong river to derive the forecasting model of FVI at three different values of Base High Level, 2m, 2.5m and 3m. The significant predictor variables on the target variable, FVI were as follows: ground water level based on sea level with negative effect, difference between ground altitude of ground water and river level with negative effect, and difference between ground water level and river level after Bo water being filled with positive sign for quantitative variables. And for qualitative variable, effective soil depth and ground soil type were significant for FVI.

A study on the safety assessment of Hydrogen refueling system (수소 충전 시스템의 안전성 평가에 관한 연구)

  • Kim, Tae Hun;Oh, Young Dal;Lee, Man Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.167-173
    • /
    • 2014
  • Hydrogen energy is expanding in range for civil use together with development of pollution-free power sources recently, and it is judged that the use of hydrogen will increase more as a part of carbon dioxide reduction measures according to the Climatic Change Convention. Especially, it is thought that the securement of safety of the used dispenser will be the biggest obstacle in the use of high-pressure hydrogen because the hydrogen station is operated in a high pressure. This study found risks in the process and problems on operation by making use of HAZOP(6 kinds), a qualitative safety evaluation technique, and FMEA(5 kinds), a fault mode effect analysis, for the hydrogen charging system at a hydrogen gas station, derived 6 risk factors from HAZOP and 5 risk factors from FMEA, and prepared measures for it.