• Title/Summary/Keyword: Qualitative Inference

Search Result 44, Processing Time 0.023 seconds

A Multi-Resolution Radial Basis Function Network for Self-Organization, Defuzzification, and Inference in Fuzzy Rule-Based Systems

  • Lee, Suk-Han
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10a
    • /
    • pp.124-140
    • /
    • 1995
  • The merit of fuzzy rule based systems stems from their capability of encoding qualitative knowledge of experts into quantitative rules. Recent advancement in automatic tuning or self-organization of fuzzy rules from experimental data further enhances their power, allowing the integration of the top-down encoding of knowledge with the bottom-up learning of rules. In this paper, methods of self-organizing fuzzy rules and of performing defuzzification and inference is presented based on a multi-resolution radial basis function network. The network learns an arbitrary input-output mapping from sample distribution as the union of hyper-ellipsoidal clusters of various locations, sizes and shapes. The hyper-ellipsoidal clusters, representing fuzzy rules, are self-organized based of global competition in such a way as to ensute uniform mapping errors. The cooperative interpolation among the multiple clusters associated with a mapping allows the network to perform a bidirectional many-to-many mapping, representing a particular from of defuzzification. Finally, an inference engine is constructed for the network to search for an optimal chain of rules or situation transitions under the constraint of transition feasibilities imposed by the learned mapping. Applications of the proposed network to skill acquisition are shown.

  • PDF

An Integrated Mathematical Model for Supplier Selection

  • Asghari, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.29-42
    • /
    • 2014
  • Extensive research has been conducted on supplier evaluation and selection as a strategic and crucial component of supply chain management in recent years. However, few articles in the previous literature have been dedicated to the use of fuzzy inference systems as an aid in decision-making. Therefore, this essay attempts to demonstrate the application of this method in evaluating suppliers, based on a comprehensive framework of qualitative and quantitative factors besides the effect of gradual coverage distance. The purpose of this study is to investigate the applicability of the numerous measures and metrics in a multi-objective optimization problem of the supply chain network design with the aim of managing the allocation of orders by coordinating the production lines to satisfy customers' demand. This work presents a dynamic non-linear programming model that examines the important aspects of the strategic planning of the manufacturing in supply chain. The effectiveness of the configured network is illustrated using a sample, following which an exact method is used to solve this multi-objective problem and confirm the validity of the model, and finally the results will be discussed and analyzed.

Evaluation System of Psychological Feelings for Corporate Identity Symbol Marks Using Fuzzy Neural Networks (퍼지 - 뉴럴네트워크를 이용한 CI 심벌마크의 감성평가시스템)

  • Chang, In-Seong;Park, Yong-Ju
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • In this paper, we construct an automatic evaluation system of psychological feeling for corporate identity (CI) symbol mark based on a fuzzy neural network technique. The system is modelled by trainable fuzzy inference rules with several input variables (qualitative and quantitative design components of CI symbol mark) and a single output variable (consumer's feeling). The back propagation learning algorithm, which is a conventional learning method of multilayer feedforward neural networks, is used for parameter identification of the fuzzy inference system. The learning ability to train data and the generalization ability to test data are evaluated for the proposed evaluation system by computer simulations.

  • PDF

Design of Grinding Datab ase Based on the Frame Model (후레임 모델에의한 연삭가공용 데이터베이스의 설계)

  • 김건희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.102-106
    • /
    • 1997
  • Grinding has difficulty in satisfying the qualitative knowledge based on the skilled expert as well as quantitative data for all user. Design of grinding database is based on the frame-based model for utilizing the empirical and qualitative knowledge. Inthis paper, basic strategy to develop the grinding database by frame-based model, which is strongly dependent upon experience and intuition, frame-base model, which is strongly dependent upon experience and intuition, is described. Design of grinding database is based on the frame-based model for utilizing the ambiguous knowledge and inference is accomplised by the object-oriented paradigm system.

  • PDF

Design of Grinding Database by Taking Frame-Based Model (후레임 모델에 의한 연삭가공용 데이터 베이스의 설계)

  • 김건희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.107-113
    • /
    • 1998
  • Grinding operation has difficulty in satisfying the qualitative knowledge based on the skilful expert as well as the quantitative data for all user. Design of grinding database based on the frame-based model is more effective method for utilizing the empirical and qualitative knowledge. In this paper. basic strategy to develop the grinding database by taking frame-based model, which is strongly dependent upon experience and intuition, is described. Grinding database based on the frame based model for designing the interaction and inference among the slots is accomplised by the object-oriented paradigm system.

  • PDF

Quantitative Causal Reasoning in Stock Price Index Prediction Model

  • Kim, Myoung-Joon;Ingoo Han
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.228-231
    • /
    • 1998
  • Artificial Intelligence literatures have recognized that stock market is a highly unstructured and complex domain so that it is difficult to find knowledge that belongs to that domain. This paper demonstrates that the proposed QCOM can derive global knowledge about stock market on the basis of a set of local knowledge and express it as a digraph representation. In addition, inference mechanism using quantitative causal reasoning can describe the qualitative and quantitative effects of exogenous variables on stock market.

  • PDF

A Fuzzy Continuous Petri Net Model for Helper T cell Differentiation

  • Park, In-Ho;Na, Do-Kyun;Lee, Kwang-H.;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.344-347
    • /
    • 2005
  • Helper T(Th) cells regulate immune response by producing various kinds of cytokines in response to antigen stimulation. The regulatory functions of Th cells are promoted by their differentiation into two distinct subsets, Th1 and Th2 cells. Th1 cells are involved in inducing cellular immune response by activating cytotoxic T cells. Th2 cells trigger B cells to produce antibodies, protective proteins used by the immune system to identify and neutralize foreign substances. Because cellular and humoral immune responses have quite different roles in protecting the host from foreign substances, Th cell differentiation is a crucial event in the immune response. The destiny of a naive Th cell is mainly controlled by cytokines such as IL-4, IL-12, and IFN-${\gamma}$. To understand the mechanism of Th cell differentiation, many mathematical models have been proposed. One of the most difficult problems in mathematical modeling is to find appropriate kinetic parameters needed to complete a model. However, it is relatively easy to get qualitative or linguistic knowledge of a model dynamics. To incorporate such knowledge into a model, we propose a novel approach, fuzzy continuous Petri nets extending traditional continuous Petri net by adding new types of places and transitions called fuzzy places and fuzzy transitions. This extension makes it possible to perform fuzzy inference with fuzzy places and fuzzy transitions acting as kinetic parameters and fuzzy inference systems between input and output places, respectively.

  • PDF

Data-driven SIRMs-connected FIS for prediction of external tendon stress

  • Lau, See Hung;Ng, Chee Khoon;Tay, Kai Meng
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.55-71
    • /
    • 2015
  • This paper presents a novel harmony search (HS)-based data-driven single input rule modules (SIRMs)-connected fuzzy inference system (FIS) for the prediction of stress in externally prestressed tendon. The proposed method attempts to extract causal relationship of a system from an input-output pairs of data even without knowing the complete physical knowledge of the system. The monotonicity property is then exploited as an additional qualitative information to obtain a meaningful SIRMs-connected FIS model. This method is then validated using results from test data of the literature. Several parameters, such as initial tendon depth to beam ratio; deviators spacing to the initial tendon depth ratio; and distance of a concentrated load from the nearest support to the effective beam span are considered. A computer simulation for estimating the stress increase in externally prestressed tendon, ${\Delta}f_{ps}$, is then reported. The contributions of this paper is two folds; (i) it contributes towards a new monotonicity-preserving data-driven FIS model in fuzzy modeling and (ii) it provides a novel solution for estimating the ${\Delta}f_{ps}$ even without a complete physical knowledge of unbonded tendons.

A Study on SIL Allocation for Signaling Function with Fuzzy Risk Graph (퍼지 리스크 그래프를 적용한 신호 기능 SIL 할당에 관한 연구)

  • Yang, Heekap;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.145-158
    • /
    • 2016
  • This paper introduces a risk graph which is one method for determining the SIL as a measure of the effectiveness of signaling system. The purpose of this research is to make up for the weakness of the qualitative determination, which has input value ambiguity and a boundary problem in the SIL range. The fuzzy input valuable consists of consequence, exposure, avoidance and demand rate. The fuzzy inference produces forty eight fuzzy rule by adapting the calibrated risk graph in the IEC 61511. The Max-min composition is utilized for the fuzzy inference. The result of the fuzzy inference is the fuzzy value. Therefore, using the de-fuzzification method, the result should be converted to a crisp value that can be utilized for real projects. Ultimately, the safety requirement for hazard is identified by proposing a SIL result with a tolerable hazard rate. For the validation the results of the proposed method, the fuzzy risk graph model is compared with the safety analysis of the signaling system in CENELEC SC 9XA WG A10 report.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.