• Title/Summary/Keyword: Quadstability

Search Result 3, Processing Time 0.019 seconds

Design, Simulation and Fabrication of a Quadstable Monolithic Mechanism (4 중 안정성 일체형 메커니즘의 설계, 해석 및 제작)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.617-624
    • /
    • 2007
  • This paper presents a novel quadstable monolithic mechanism (QsMM) which provides four stable equilibrium positions within its operation range. The quadstable mechanism has been realized from the use of both X- and Y-directional bistable structures which use curved snapping beams. A millimeter-scale brass mechanism was fabricated by ultra-precision milling to test the quadstability and the displacement-load behavior, and the prototype clearly demonstrated four distinct stable positions in its millimeter-scale planar operation. We discuss the design concept, finite element simulation for static and transient responses, fabrication by ultra-precision milling, and experimental measurement of the proposed quadstable mechanism.

Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses (전자기 로렌츠력을 이용한 다중안정성 마이크로 액추에이터의 비선형 구조 및 전기-열 해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1119-1127
    • /
    • 2010
  • In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator.