• Title/Summary/Keyword: Quadriceps muscles

Search Result 127, Processing Time 0.024 seconds

A Comparison of Muscle Contraction Using Functional Electrical Stimulation: Intermittent High Frequency Alternating Stimulation Versus Intermittent Low Frequency Synchronous Stimulation (기능적 전기자극기를 이용한 간헐적 고주파 교대자극과 간헐적 저주파 동시자극의 근 수축력 비교)

  • Song, Young-Hee;Cho, Sang-Hyun;Lee, Young-Hee
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.115-131
    • /
    • 2002
  • Functional electrical stimulation (FES) training of the knee extensors is a useful way to rehabilitate the ability to stand and walk. However, training using FES has not been able to solve the problem of fatigue; clinical application of FES quickly produces muscle fatigue, due to the continuous activation of the muscles of the lower extremity. Therefore, reduction of muscle fatigue is an important factor in increasing the effectiveness of FES training in paraplegia. Intermittent high frequency alternating stimulation is a method that combines the advantages of high frequency (leading to strong muscle contractions) and alternating stimulation (reducing muscle fatigue), thereby continuously strengthening muscles. It is not known whether low frequency simultaneous stimulation results in stronger muscle contraction than high frequency alternating stimulation. This study compared the effectiveness of high frequency alternating stimulation with low frequency synchronized stimulation. Muscle power using FES on the quadriceps of 20 normal subjects were compared. Intermittent high frequency alternating stimulation did not produce more powerful muscle contraction than intermittent low frequency synchronized stimulation, because the muscle characteristics differed individually. Significant individual variation according to muscle characteristics was founded when applying FES. Accordingly, when physical therapists use FES to treat patients, they must be aware of individual variation in muscle characteristics.

  • PDF

Effects of Center of Pressure on Muscle Activations and Joint Range of Motion of Lower Extremities during Squat

  • Yoon, Woo Ram;Park, Sang Heon;Jeong, Chan Hyeok;Park, Ji Ho;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • Objective: The aim of this study was to analyze muscle activation of the lower extremities as a function of changes of the center of pressure (CoP) of the foot during squats in order to provide quantitative information to trainers who would like to teach correct movements for developing muscles. Method: Ten men with over three years of weight training experience participated in this study (age: $26.1{\pm}0.8yrs$, height: $171.2{\pm}3.9cm$, body mass: $71.1{\pm}5.7kg$, 60%RM: $84{\pm}9kg$, career: $4.0{\pm}0.7yrs$). The participants were instructed to perform a squat in each of 3 conditions, with different CoP's (the front, middle, and rear of the foot). Results: The position of the CoP showed significant differences according to instructions in both the eccentric and concentric contraction phases (p < .05). The range of movement of the hip and ankle joints showed significant differences corresponding to changes of the CoP position (p < .05). The rectus femoris and gluteus maximus muscle showed significant differences for different CoP positions only in the concentric contraction phase, while the gastrocnemius and anterior tibialis were significantly different in both the concentric and eccentric contraction phase (p < .05). Conclusion: When the target muscle of squat training is the gastrocnemius, the CoP should be located in the front of the foot for effective muscle training. When the target muscles of squat training are the gluteus maximus and quadriceps femoris, the CoP should be located on the rear of the foot.

The lower-extremity muscle co-activation of flat-footed subjects wearing high-heels while descending stairs. (평발 대상자가 하이힐을 신고 계단을 내려갈 때 하지의 근활성도 변화)

  • Kim, Na-Hee;Choi, Bo-ram
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.385-391
    • /
    • 2018
  • The purpose of this study was to examine the lower-extremity muscle activation of flat-footed and normal-footed subjects descending stairs while wearing high-heels, thereby identifying any imbalance between the medial and lateral muscles.Thirty female students volunteered to participate in this study. The navicular drop test (NDT) was applied to the selection criteria for the flat-footed group and the normal-footed group. Surface electromyographic data was collected from the medial and lateral quadriceps, hamstrings, and gastrocnemius. Activation of MG and LG was significantly lower in the flat-footed group than in the normal-footed group. Both groups showed significant increases in MQMH and MHMG, but the co-activation in the medial and lateral muscles was lower in the flat-footed group. The co-activation ratios showed a significantly greater MQMH/LQLH in the flat-footed group. Flat-footed subjects who wear high-heels are more likely to experience impaired knee joint alignment than normal-footed subjects. Therefore, flat-footed subjects should use caution when descending stairs while wearing high-heels.

Effects of Isokinetic Strength Exercise of the Hemiparetic Knee Joint on Lower Extremity Sensorimotor and Gait Functions in Patients With Chronic Stroke: Open Kinetic Chain Versus Closed Kinetic Chain

  • An, Chang-man;Roh, Jung-suk
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.49-60
    • /
    • 2019
  • Background: After stroke, in order to improve gait function, it is necessary to increase the muscle strength and to enhance the propriocetive function of the lower extremity. Objects: This study aimed to compare the effects of open kinetic chain (OKC) versus closed kinetic chain (CKC) isokinetic exercise of the hemiparetic knee using the isokinetic equipment on lower extremity sensorimotor function and gait ability in patients with chronic stroke. Methods: Thirty participants with chronic hemiplegia (> 6 months post-stroke) were randomly divided into 2 equal groups: CKC group and OKC group. Patients from both groups attended conventional physiotherapy sessions 3 times a week for 6 weeks. Additionally, subjects from the CKC group performed isokinetic exercise using the CKC attachment, while those from the OKC group performed isokinetic exercise using the OKC attachment. The isokinetic knee and ankle muscles strength, position sense of the knee joint, and spatiotemporal gait parameters were measured before and after interventions. Results: The knee muscles peak torque/body weight (PT/BW) and hamstring/quadriceps (H/Q) ratio significantly increased in both groups (p<.01). In particular, ankle plantarflexors PT/BW, position sense of the knee, gait velocity, and spatial gait symmetry significantly improved in the CKC group (p<.01, p<.05, p<.01, and p<.01, respectively). Conclusion: CKC isokinetic exercise can be an effective therapeutic intervention for the improvement of sensorimotor function of the lower extremity and gait functions, such as gait velocity and symmetry. CKC position in isokinetic strength training is effective to improve functional ability in patients with chronic stroke.

The Comparative Analysis of EMG Activities on the Lower Limb Muscles during Power Walking and Normal Walking (파워보행과 일반보행 시 하지근의 근전도 비교 분석)

  • Gi, Se-Joon;Chae, Woen-Sik;Kang, Nyeon-Ju;Jang, Jae-Ik;Yoon, Chang-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.125-133
    • /
    • 2008
  • The purpose of this study was to compare EMG activities on the lower limb muscles during power walking and mormal walking. Seventeen subjects who have no known musculoskeletal disorders performed walking exercise at a cadence of 140 beats/min. After surface electrodes were attached to rectus femoris, vastus medialis, vastus lateralis, biceps femoris, tibialis anterior, medial gastrocnemius, averageed IEMG and peak IEMG, were measured. The result showed that the power walking did influence the averaged IEMG and peak IEMG. The EMG activity of the quadriceps during power walking was significantly higher than the corresponding values in normal walking during most phases. The averaged IEMG and peak IEMG of gastrocnemius muscles at the end of the double limb stance increased significantly when going from normal walking to power walking. The results indicate that power walking had greater effect on EMG activities on the lower limb muscles and demonstrate that the wide range of benefits can be obtained from power walking in respect to health and fitness. This study suggests that power walking has the potential to improve aerobic fitness and assist in weight management.

Effects of Electrical Stimulation Therapy on Chronic Knee Pain, Exercise Self-Efficacy, and Quality of Life in Korean Elderly Women (전기 자극이 여성 노인의 만성 무릎통증, 운동자기효능 및 삶의 질에 미치는 효과)

  • Sok, So Hyune
    • Korean Journal of Adult Nursing
    • /
    • v.19 no.3
    • /
    • pp.508-516
    • /
    • 2007
  • Purpose: This study was to examine the effects of electric stimulation therapy on chronic knee pain, exercise self-efficacy, and quality of life in Korean elderly women. Methods: The design was an unequivalent control pretest-posttest study. Samples were total of 60 (experimental: 30, control: 30) elderly women with healthy cognitive and communication abilities aged 65 years old and above. The experimental treatment involved was the electric stimulation of both thigh quadriceps muscles for 15 minutes per treatment, 3times per a week, for a total of 12 weeks. Measurements taken were S-F MPQ and AIMS for chronic knee pain, exercise self-efficacy measurement for exercise self-efficacy, and S-F 36 scale for quality of life. Data were analyzed using SPSS PC+ 12. Results: Chronic knee pain according to the Short-Form McGill Pain Questionnaire (t=43.563, p=.000) and Arthritis Impact Measurement Scale (t=31.364, p=.000) were significantly decreased in the experimental group by the application of electrical stimulation therapy. Exercise self-efficacy (t=107.116, p=.000) and quality of life (t=76.429, p=.000) were significantly increased in the experimental group by the application of electrical stimulation therapy. Conclusion: Electrical stimulation therapy could be a more effective primary nursing intervention in decreasing chronic knee pain, and on increasing exercise self-efficacy and quality of life for Korean elderly women.

  • PDF

The Effect of the Muscle Firing Rate on Muscle Length (근 길이에 따른 근 섬유 동원률의 차이)

  • Song, Young-Hee;Chung, Yi-Jung;Cho, Sang-Hyun
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.85-90
    • /
    • 2004
  • The purpose of this study was to find the difference in muscle firing rate between each muscle according to the knee angle with the quadriceps femoris which is a representative action muscle of the lower extremity. Seven normal healthy subjects were recruited. The median frequency (MDF) of muscle contraction was recorded from vastus lateralis, vastus medialis, and rectus femoris muscles using the surface EMG, in 5 seconds, during maximal isometric knee extension. The data were analyzed by the two-way repeated ANOVA. The results of the study were as follows: 1) median frequency of muscle contraction was significantly higher at the vastus lateralis, vastus medialis, and rectus femoris in descending order. 2) median frequency of muscle contraction was significantly higher at the $30^{\circ}$, $60^{\circ}$, and $90^{\circ}$ in descending order. Consequently, muscle recruitment at the knee decreases the EMG activity of the lengthened muscle. This study suggests that the change in EMG activity at different muscle lengths resulted in affecting the muscle firing rate during the knee extension.

  • PDF

The Effects of Closed kinetic chain Exercises of Unstable Floor on the Stability of the Knee Joints of Patients with Anterior Cruciate Ligament Reconstruction (불안정한 바닥에서의 닫힌 사슬운동이 전십자인대 재건술 환자의 슬관절 안정성에 미치는 영향)

  • Kim, Yeon-Ju;Park, Rae-Joon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • Purpose : This study was to comparison of EMG of an stable exercise group and unstable exercise group on patients who have had anterior cruciate ligament reconstruction(ACL reconstruction). Methods : The subjects of the study were patients who had no less than 4 weeks after ACL reconstruction and could stand on one leg, and they divided into a control group with 9 patients doing closed kinetic chain exercises on the stable floor and an experimental group with 10 patients doing closed kinetic chain exercises on the unstable floor and in order to compare degrees of the muscle activity of the thigh extensor and flexor was tested each before the exercise, in 3 weeks and 6 weeks after doing exercises by using surface electromyography (Surface EMG). The patients made 3 sets of exercises (10 times per set), each of which consisted of exercises using elastic bands and the squat. Results : There was statistic significance about the vastus medialis muscle. Conclusion : It is thought that the closed-chain exercise could be an exercise program through which patients could enhance the muscle activity of the vastus medialis muscle optionally among the quadriceps muscle and the hamstring muscles which should weaken after ACL reconstruction.

  • PDF

Anatomy and Biomechanics of the Patellofemoral Joint (슬개대퇴관절의 해부학과 생체역학에 관한 문헌적 고찰)

  • Choi, Byung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.935-944
    • /
    • 2001
  • The patellofemoral pint is formed by the articulation of the patella and femoral condyles in the trochlear groove. The complexity of the patellofemoral pint is magnified by the fact that the tibiofemoral pint works in conjunction with the patellofemoral pint. Additionally, other pints such as the subtalar pint., hip and sacroiliac pints indirectly contribute to the function of the patellofemoral pint. This pint has little bony stability, Soft tissue surrounds the pint to increase stability. The patellofemoral pint increases the mechanical advantage of the quadriceps muscles and resists mechanical loading. In patellofemoral dysfunction, patellofemoral contact pattern is disrupted. leading to excessive compression at the pint. When you treat the patellofemoral dysfunction, you should evaluate anatomic and biomechanic components and find factors of patellofemoral dysfunction. Hamstring tightness. weakness of VMO and tightness of lateral retinaculum lead to flexed knee and abnormal patella tracking and patellofemoral pint reaction force and patellofemoral dysfunction. A through understanding of the anatomy and biomechanics may assist the clinician in the recognition and treatment of patients with patellofemoral pain. Therefore physical therapists should apply modality as well as therapeutic exercise, stretching and strengthening. In this paper, I will discuss the germane anatomical structures and biomechanics of the patellofemoral pint.

  • PDF

Change of the Maximal Isometric Contraction to the Spastic Muscle by NMES (신경근전기자극에 의한 경직근의 최대 등척성 수축력 변화)

  • Lim, Sang-Wan;Lee, Jeong-Woo;Kim, Tae-Youl;Song, Myung-Soo;Choi, Eun-Young
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.2 no.3
    • /
    • pp.25-35
    • /
    • 2004
  • The purpose of this study was compared to MTICs(maximal tolerated isometric contraction), decrement and recovery. For this, using isokinetic exercise analysis device(Biodex Medical Systems Inc., Biodex System 3PRO, USA), low rate(20 Hz) and high rate(100 Hz) NMES(neuromuscular electrical stimulation) were applied to the quadriceps muscles of fifteen patients with spastic hemiplegia caused by lesions in the central nervous system. The results were as follows: 1. It was shown to fast decrement in the middle of phase at low rate NMES and to slow decrement of MTIC response at high rate NMES(p<.01). 2. It was shown to fast recovery at high rate NMES and to slow recovery at low rate NMES in recovery tendency of MTIC(p<.01). These conclusions suggest that NMES of high rate caused to slow fatigue and fast recovery different from low rate NMES.

  • PDF