• Title/Summary/Keyword: Quadrature

Search Result 1,087, Processing Time 0.021 seconds

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods

  • Zamani, Abbas;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.671-682
    • /
    • 2017
  • In this research, seismic response of pipes is examined by applying nanotechnology and piezoelectric materials. For this purpose, a pipe is considered which is reinforced by carbon nanotubes (CNTs) and covered with a piezoelectric layer. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via cylindrical shell element and Mindlin theory. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite and to consider the effect of the CNTs agglomeration on the scismic response of the structure. Moreover, the dynamic displacement of the structure is extracted using harmonic differential quadrature method (HDQM) and Newmark method. The main goal of this research is the analysis of the seismic response using piezoelectric layer and nanotechnology. The results indicate that reinforcing the pipeline by CNTs leads to a reduction in the displacement of the structure during an earthquake. Also the negative voltage applied to the piezoelectric layer reduces the dynamic displacement.

Vibration of a rotary FG plate with consideration of thermal and Coriolis effects

  • Ghadiri, Majid;Shafiei, Navvab;Babaei, Ramin
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.197-207
    • /
    • 2017
  • In this paper, Coriolis effect on vibration behavior of a rotating rectangular plate made of functionally graded (FG) materials under thermal loading has been investigated. The material properties of the FG plate are supposed to get changed in parallel with the thickness of the plate and the thermal properties of the material are assumed to be thermo-elastic. In this research, the effect of hub size, rotating speed and setting angle are considered. Governing equation of motion and the associated boundary conditions are obtained by Hamilton's principle. Generalized differential quadrature method (GDQM) is used to solve the governing differential equation with respect to cantilever boundary condition. The results were successfully verified with the published literatures. These results can be useful for designing rotary systems such as turbine blades. In this work, Coriolis and thermal effects are considered for the first time and GDQM method has been used in solving the equations of motion of a rotating FGM plate.

All-optical Signal Processing of Fiber Impairments in Dual-Polarization 112 Gbit/s m-ary QAM Coherent Transmission

  • Asif, Rameez;Islam, Muhammad Khawar;Zafrullah, Muhammad
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • We have numerically implemented a receiver side all-optical signal processing method, i.e. optical backward propagation (OBP), by dispersion compensating fiber (DCF) and non-linear compensator (NLC) devised by effective negative Kerr non-linear coefficient using two highly non-linear fibers (HNLFs). The method is implemented for the post-processing of fiber transmission impairments, i.e. chromatic dispersion (CD) and non-linearities (NL). The OBP module is evaluated for dual-polarization (DP) m-ary (m=4,16,32,64,256) quadrature amplitude modulation (QAM) in 112 Gbit/s coherent transmission over 1200 km standard single mode fiber (SMF). We have also investigated an intensity limited optical backward propagation module (IL-OBP) by using a self-phase modulation-based optical limiter with an appropriate pre-chirping to compensate for the intensity fluctuations in the transmission link. Our results show that in highly non-linear sensitive 256QAM transmission, we have observed a 66% increase in the transmission distance by implementing IL-OBP as compared to conventional OBP.

Temperature dependent buckling analysis of graded porous plate reinforced with graphene platelets

  • Wei, Guohui;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.275-290
    • /
    • 2021
  • The main purpose of this research work is to investigate the critical buckling load of functionally graded (FG) porous plates with graphene platelets (GPLs) reinforcement using generalized differential quadrature (GDQ) method at thermal condition. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the plate thickness direction. Generally, the thermal distribution is considered to be nonlinear and the temperature changing continuously through the thickness of the nanocomposite plates according to the power-law distribution. To model closed cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme are used, through which mechanical properties of the structures can be extracted. Based on the third order shear deformation theory (TSDT) and the Hamilton's principle, the equations of motion are established and solved for various boundary conditions (B.Cs). The fast rate of convergence and accuracy of the method are investigated through the different solved examples and validity of the present study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns through the thickness, porosity coefficient and distribution of porosity on critical buckling load. Results reveal that the importance of thermal condition on of the critical load of FGP-GPL reinforced nanocomposite plates.

Application of antenna array to FBMC/OQAM system in frequency-selective signal environment (주파수 선택적 신호 환경에서 안테나 어레이의 FBMC/OQAM 시스템 적용)

  • Kim, Yekaterina;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • Despite attractive advantages such as good time-frequency localization and improved spectral efficiency, filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) suffers from multipath fading. In highly frequency-selective channels, the effect of multipath interference can significantly distort the FBMC/OQAM signal due to the absence of cyclic prefix. To resolve the problem of the multipath interference in FBMC/OQAM, this paper proposes applying an antenna array that provides well shaped beam pattern for each multipath. To evaluate the performance of the proposed array system, various computer simulations have been conducted. The accuracy of direction of arrival estimation is demonstrated through spatial spectrum for a different number of antennas in a sub-array. The performance improvement is presented in terms of bit error rate. We found that the proposed array system mitigate the multipath interferences in Extended Typical Urban model with 12 antennas in a sub-array. Moreover, as the number of antennas in a sub-array increases, the system provides a signal-to-noise ratio gain.

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment

  • Hajmohammad, Mohammad Hadi;Zarei, Mohammad Sharif;Farrokhian, Ahmad;Kolahchi, Reza
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.299-321
    • /
    • 2018
  • A layerwise shear deformation theory is applied in this paper for buckling analysis of piezoelectric truncated conical shell. The core is a multiphase nanocomposite reinforced by carbon nanotubes (CNTs) and carbon fibers. The top and bottom face sheets are piezoelectric subjected to 3D electric field and external voltage. The Halpin-Tsai model is used for obtaining the effective moisture and temperature dependent material properties of the core. The proposed layerwise theory is based on Mindlin's first-order shear deformation theory in each layer and results for a laminated truncated conical shell with three layers considering the continuity boundary condition. Applying energy method, the coupled motion equations are derived and analyzed using differential quadrature method (DQM) for different boundary conditions. The influences of some parameters such as boundary conditions, CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature changes and external voltage are investigated on the buckling load of the smart structure. The results show that enhancing the CNTs weight percent, the buckling load increases. Furthermore, increasing the moisture and temperature changes decreases the buckling load.

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Cho, Jin Young;Han, Tae Young;Park, Ho Jin;Hong, Ser Gi;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.13-30
    • /
    • 2019
  • This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.

CDMA Digital Mobile Communications and Message Security

  • Rhee, Man-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.4
    • /
    • pp.3-38
    • /
    • 1996
  • The mobile station shall convolutionally encode the data transmitted on the reverse traffic channel and the access channel prior to interleaving. Code symbols output from the convolutional encoder are repeated before being interleaved except the 9600 bps data rate. All the symbols are then interleaved, 64-ary orthogonal modulation, direct-sequence spreading, quadrature spreading, baseband filtering and QPSK transmission. The sync, paging, and forward traffic channel except the pilot channel in the forward CDMA channel are convolutionally encoded, block interleaved, spread with Walsh function at a fixed chip rate of 1.2288 Mcps to provide orthogonal channelization among all code channels. Following the spreading operation, the I and Q impulses are applied to respective baseband filters. After that, these impulses shall be transmitted by QPSK. Authentication in the CDMA system is the process for confirming the identity of the mobile station by exchanging information between a mobile station and the base station. The authentication scheme is to generate a 18-bit hash code from the 152-bit message length appended with 24-bit or 40-bit padding. Several techniques are proposed for the authentication data computation in this paper. To protect sensitive subscriber information, it shall be required enciphering ceratin fields of selected traffic channel signaling messages. The message encryption can be accomplished in two ways, i.e., external encryption and internal encryption.