• Title/Summary/Keyword: Quadratic congestion cost

Search Result 6, Processing Time 0.019 seconds

A Study on The Generation Redispatch for Congestion Management of Transmission Lines (송전선 혼잡 해소를 위한 발전력 재배분 기법 연구)

  • Jung, Jae-Ok;Lee, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.347-349
    • /
    • 2000
  • Under an open transmission access, the generation dispatch is determined by the bidding process of market participants. Congestion occurs when the dispatch would result in the violation of operational constraints. Congestion problem is formulated and solved by OPF(optimal power flow) calculation. The objective functions in OPF are given as quadratic cost functions or piecewise linear functions of bidding functions. In this study, the optimization technique of generation dispatch is presented for the combination of two types of quadratic and linear cost functions.

  • PDF

LMP Calculation with Consideration of Transaction Strategy and Quadratic Congestion Cost Function (거래전략 및 Quadratic 혼잡비용을 고려한 LMP산정에 대한 연구)

  • Kim, Jae-Wook;Jung, Sung-Hun;Min, Kyung-Il;Moon, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.257-265
    • /
    • 2011
  • As the competitive market system has been introduced to the electrical power trade, the priority concern would be that the price of electrical power should be reasonable. It is because, when this rule is solid, we can avoid the distortion of competition and assure the greater efficiency in management. LMP(Locational Marginal Price) means marginal price at each bus. This components consist of energy, loss and congestion cost. At this point, the LMP result that is calculated by traditional model is changeable by the location of the slack and can not be used in bilateral Transaction. This paper proposed algorithm is proved its rationality and credibility by comparing the result of the simulation of virtual 6_bus system that is calculated by traditional method, and showed that the LMP components are changed according to the Transaction Strategy. Furthermore, It shows the effect of additional congestion cost on the transmission line that has bottle neck frequently by simulation.

Optimal Siting of UPFC for Reducing Congestion Cost by using Shadow Prices

  • Lee, Kwang-Ho;Moon, Jun-Mo
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.21-26
    • /
    • 2001
  • As competition is introduced in the electricity supply industry, congestion becomes a more important issue. Congestion in a transmission network occurs due to an operating condition that causes limit violations on the transmission capacities. Congestion leads to inefficient use of the system, or causes additional costs (Congestion cost). One way to reduce this inefficiency or congestion cost is to control the transmission flow through the installation of UPFC (Unified Power Flow Controller). This paper also deals with an optimal siting of the UPFC for reducing congestion cost by using shadow prices. A performance index for an optimal siting is defined as a combination of line flow sensitivities and shadow prices. The proposed algorithm is applied to the sample system with a condition, which is concerning the quadratic cost functions. Test results show that the siting of the UPFC is optimal to minimize the congestion cost by the proposed algorithm.

  • PDF

Maximizing the Overall Satisfaction Degree of all Participants in the Market Using Real Code-based Genetic Algorithm by Optimally Locating and Sizing the Thyristor-Controlled Series Capacitor

  • Nabavi, Seyed M.H.;Hajforoosh, Somayeh;Hajforoosh, Sajad;Karimi, Ali;Khafafi, Kamran
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.493-504
    • /
    • 2011
  • The present paper presents a genetic algorithm (GA) to maximize social welfare and perform congestion management by optimally placing and sizing one Thyristor-Controlled Series Capacitor (TCSC) device in a double-sided auction market. Simulation results, with line flow constraints before and after the compensation, are compared through the Sequential Quadratic Programming SQP method, and are used to analyze the effect of TCSC on the congestion levels of modified IEEE 14-bus and 30-bus test systems. Quadratic, smooth and nonsmooth (with sine components due to valve point loading effect) generator cost curves, and quadratic smooth consumer benefit functions are considered. The main aims of the present study are the inclusion of customer benefit in the social welfare maximization and congestion management objective function, the consideration of nonsmooth generator characteristics, and the optimal locating and sizing of the TCSC using real code-based GA to guarantee fast convergence to the best solution.

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.

Optimum Design of Steel-Deck System for Two-Story Roads (2층도로용 강구조 덱 시스템의 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Kim, Hyun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.553-564
    • /
    • 1998
  • Recently, more and more steel-deck structural system for two story roads has been adopted as a solution against traffic congestion in urban area, mainly because of fast construction, reduced self-weight, higher stiffness and efficient erection compared to that of concrete decks. The main objective is to study on the unit-elective optimal type and proportioning of a rational steel-deck system for two story roads using an optimum design program specifically developed for steel-deck systems. The objective function for the optimization is formulated as a minimum cost design problem. The behavior and design constraints are formulated based on the ASD(Allowable Stress Design) criteria of the Korean Bridge Design Code. The optimum design program developed in this study consists of two steps - the first step for the optimization of the steel box or plate girder viaducts, and the second step for the optimum design of the steel-decks with closed or open ribs. A grid model is used as a structural analysis model for the optimization of the main girder system, while the analysis of the deck system is based on the Pelican-Esslinger method. The SQP(Sequential Quadratic Programming) is used as the optimization technique for the constrained optimization problem. By using a set of application examples, the rational type related to the optimized steel-deck system designs is investigated by comparing the cost effectiveness of each type. Based on the results of the investigation it may be concluded that the optimal linear box girder and deck system with closed ribs may be utilized as one of the most rational and economical viaducts in the construction of two-story roads.

  • PDF