• Title/Summary/Keyword: Quad tree

Search Result 107, Processing Time 0.03 seconds

A Study on the Improvement of Wavelet-Based Best-Basis Algorithm for Image Compression (영상압축을 위한 웨이브릿 기반 Best-Basis 알고리즘의 개선에 관한 연구)

  • 안종구;추형석;박제선
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.591-597
    • /
    • 2003
  • In this paper, a best-basis selection algorithm that improves the performance of the coding gains and the computational complexity is proposed. The proposed algorithm limits the computational complexity according to the resolved threshold value and decomposes the parent subbands by using the top-down tree search and the relative energy between the parent subbands and the child subbands. For the experiments of the proposed algorithm, the bit-rates, the peak signal-to-noise ratio (PSNR), and the reconstructed images are presented by using the Quad-tree coder. The result of the proposed algorithm is compared to that of DWT algorithm using the Quad-tree coder for a set of standard test images. In addition, the result of the proposed algorithm is compared to that of JPEG-2000 algorithm and that of S+P algorithm.

Digital Hologram Watermarking using Quad-tree Fresnelet Transform (Quad-tree Fresnelet 변환을 이용한 디지털 홀로그램 워터마킹)

  • Seo, Young Ho;Koo, Ja Myung;Lee, Yoon Hyuk;Kim, Dong Wook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.79-89
    • /
    • 2013
  • This paper proposes a watermarking scheme to protect ownership of a digital hologram, an ultra-high value-added content. It performs pre-defined levels of quad-tree Fresnelet transforms. The relationship among the same-positional-blocks is extracted as the digital pre-watermark. For the relationship, we use properties of a digital hologram that a hologram pixel retains all the information of the object and that the same size of partial holograms reconstructs the same size of object but different in their view points. Also we mix a set of private data with the pre-watermark and the result is encrypted by a block cipher algorithm with a private key. Experimental results showed that the proposed scheme is very robust for the various malicious and non-malicious attacks. Also because it extracts the watermarking data instead of inserting, the watermarking process does not harm the original hologram data. So, it is expected to be used effectively for invisible and robust watermark for digital holograms.

Color Image Encryption Technique Using Quad-tree Decomposition Method (쿼드트리 분할 기술을 이용한 컬러 영상 암호화 기술)

  • Choi, Hyunjun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.625-630
    • /
    • 2016
  • Recently, various types of image contents are being produced, and interest in copyright protection technology is increasing. In this paper, we propose an image encryption technology for color images. This technique divides the image into RGB color components and then performs quad-tree decomposition based on the edge of image. After the quad-tree partitioning, encryption is performed on the selected blocks. Encryption is performed on color components to measure encryption efficiency, and encryption efficiency is measured even after reconstitution into a color image. The encryption efficiency uses a visual measurement method and an objective image quality evaluation method. The PSNR values were measured as 7~10 dB for color difference components and 16~19 dB for color images. The proposed image encryption technology will be used to protect copyright of various digital image contents in the future.

SQR-Tree : A Hybrid Index Structure for Efficient Spatial Query Processing (SQR-Tree : 효율적인 공간 질의 처리를 위한 하이브리드 인덱스 구조)

  • Kang, Hong-Koo;Shin, In-Su;Kim, Joung-Joon;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Typical tree-based spatial index structures are divided into a data-partitioning index structure such as R-Tree and a space-partitioning index structure such as KD-Tree. In recent years, researches on hybrid index structures combining advantages of these index structures have been performed extensively. However, because the split boundary extension of the node to which a new spatial object is inserted may extend split boundaries of other neighbor nodes in existing researches, overlaps between nodes are increased and the query processing cost is raised. In this paper, we propose a hybrid index structure, called SQR-Tree that can support efficient processing of spatial queries to solve these problems. SQR-Tree is a combination of SQ-Tree(Spatial Quad- Tree) which is an extended Quad-Tree to process non-size spatial objects and R-Tree which actually stores spatial objects associated with each leaf node of SQ-Tree. Because each SQR-Tree node has an MBR containing sub-nodes, the split boundary of a node will be extended independently and overlaps between nodes can be reduced. In addition, a spatial object is inserted into R-Tree in each split data space and SQ-Tree is used to identify each split data space. Since only R-Trees of SQR-Tree in the query area are accessed to process a spatial query, query processing cost can be reduced. Finally, we proved superiority of SQR-Tree through experiments.

Quad Tree Representation and Compression for LiDAR Data (LiDAR 데이터의 Quad Tree 구조 표현과 압축에 관한 연구)

  • Lee, Hyo-Jong;Woo, Seung-Young;Jo, Ki-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.753-754
    • /
    • 2008
  • LiDAR data are acknowledged as very useful method to represent 3-D geographical information. In this paper aquad tree has been utilized to represent the 3-D spatial information. Compression algorithm is implemented based on a given threshold. The efficiency of compress is very high with large threshold values.

  • PDF

Digital Hologram Data Compression Scheme using Quad-tree Fresnelet Transform (Quad-tree Fresnelet 변환을 이용한 디지털 홀로그램 데이터 압축 기법)

  • Yang, Yejin;Lee, Yoonhyuck;Seo, Youngho;Kim, Dongwook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.62-64
    • /
    • 2015
  • 본 논문에서는 디지털 홀로그램 영상 데이터를 Fresnelet 변환을 이용하여 압축하는 기법을 다룬다. 이 방법은 quad-tree 기반 Fresnelet 변환을 통해 주파수 영역의 부대역으로 나누고, 각 부대역의 에너지에 따라 일정 순서의 부대역을 제거한 후, 나머지 부대역들을 2 차원 동영상 압축기로 압축하는 방식이다. 압축기는 H.264/AVC 와 HEVC 사용되며, 실험결과는 압축기를 거치지 않고 특정 부대역의 에너지를 제거한 영상과 원본과의 화질을 비교하고, 제거되는 않은 영역들을 압축한 결과 압축률에 따른 화질을 비교, 분석한다.

  • PDF

A Circuit Extractor Using the Quad Tree Structure (Quad Tree 구조를 이용한 회로 추출기)

  • 이건배;정정화
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.101-107
    • /
    • 1988
  • This paper proposes a circuit extractor which extracts a netlist from the CIF input file cntaining the layout mask artwork informations. The circuit extractor extracts transistors and their interconnections, and calculates circuit parameter such as parasitic resistance and parasitic capacitance from the mask informations. When calculating the parasitic resistance, we consider the current flow path to reduce the errors caused by the resistance approximation. Similarly, we consider the coupling capacitance which has an effect on the circuit characteristics, when the parasitic capacitances are calculated. Therefore, using these parameter values as an input to circuit simulation, the circuit characteristics such as delay time can be estimated accurately. The presented circuit extraction algorithm uses a multiple storage quad tree as a data sturucture for storing and searching the 2-dimensional geometric data of mask artwork. Also, the proposed algorithm is technologically independent to work across a wide range of MOS technologies without any change in the algorihm.

  • PDF

Image coding using quad-tree of wavelet coefficients (Wavelet coefficients의 quad-tree를 이용한 이미지 압축)

  • 김성탁;추형석;이태호;전희성;안종구
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.313-316
    • /
    • 2000
  • Wavelet transform has specific properties for image coding. The property used at this Paper is clustering of significant coefficients across subband. These coefficients are classified in significant coefficient and insignificant coefficient on a threshold value, and symbolized EZW decreases symbol-position information using zero-trees, but threshold value fall for raising resolution, then coding cost of significant coefficients is expensive. To avoid this fact, this paper uses quad-tree representing coefficient-position information. a magnitude of significant coefficient is represented on matrix used at EZW. the proposed algorithm is hoped for raising a coding cost.

  • PDF

An Efficient Hybrid Spatial Index Structure based on the R-tree (R-tree 기반의 효율적인 하이브리드 공간 인덱스 구조)

  • Kang, Hong-Koo;Kim, Joung-Joon;Han, Ki-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.771-772
    • /
    • 2009
  • 최근 대표적인 공간 인덱스 구조인 R-tree를 기반으로 KD-tree나 Quad-tree와 같은 공간 분할 특성을 이용하여 인덱싱 성능을 향상시키기 위한 연구가 활발하다. 본 논문에서는 기존에 제시된 R-tree 기반 인덱스 구조인 SQR-tree와 PMR-tree의 특성을 결합하여 대용량 공간 데이타를 보다 효율적으로 처리하는 인덱스 구조인 MSQR-tree(Mapping-based SQR-tree)를 제시한다. SQR-tree는 Quad-tree를 확장한 SQ-tree와 각 SQ-tree 리프 노드마다 실제로 공간 객체를 저장하는 R-tree가 연계되어 있는 인덱스 구조이고, PMR-tree는 R-tree에 R-tree 리프 노드를 직접 접근할 수 있는 매핑 트리를 적용한 인덱스 구조이다. 본 논문에서 제시하는 MSQR-tree는 SQR-tree를 기본 구조로 가지고 R-tree마다 매핑 트리가 적용된 구조를 갖는다. 따라서, MSQR-tree에서는 SQR-tree와 같이 질의가 여러 R-tree에서 분산 처리되고, PMR-tree와 같이 매핑 트리를 통해 R-tree 리프 노드를 빠르게 접근할 수 있다. 마지막으로 성능 실험을 통해 MSQR-tree의 우수성을 입증하였다.

An Improved Multi-resolution image fusion framework using image enhancement technique

  • Jhee, Hojin;Jang, Chulhee;Jin, Sanghun;Hong, Yonghee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.69-77
    • /
    • 2017
  • This paper represents a novel framework for multi-scale image fusion. Multi-scale Kalman Smoothing (MKS) algorithm with quad-tree structure can provide a powerful multi-resolution image fusion scheme by employing Markov property. In general, such approach provides outstanding image fusion performance in terms of accuracy and efficiency, however, quad-tree based method is often limited to be applied in certain applications due to its stair-like covariance structure, resulting in unrealistic blocky artifacts at the fusion result where finest scale data are void or missed. To mitigate this structural artifact, in this paper, a new scheme of multi-scale fusion framework is proposed. By employing Super Resolution (SR) technique on MKS algorithm, fine resolved measurement is generated and blended through the tree structure such that missed detail information at data missing region in fine scale image is properly inferred and the blocky artifact can be successfully suppressed at fusion result. Simulation results show that the proposed method provides significantly improved fusion results in the senses of both Root Mean Square Error (RMSE) performance and visual improvement over conventional MKS algorithm.