• Title/Summary/Keyword: QUALISYS

Search Result 48, Processing Time 0.019 seconds

The Comparative Analysis of Gait Safety between Elderly Female and Adult Female (여성 노인과 성인의 보행안정성 비교)

  • Yi, Jae-Hoon;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2014
  • The purpose of this study was to investigate the different patterns of the lower limb between elderly and adult females to reduce the rate of falls. Ten old females(age: $73.1{\pm}2.69yrs$, height: $151.9{\pm}4.82cm$, mass: $57.36{\pm}5.36$) and ten adult females(age: $28\pm}4.76$ yrs, height: $160.6{\pm}6.83cm$, mass: $53.9{\pm}8.44$) were participated in this experiment. The gait motions were captured with Qualisys system and variables were calculated with Visual-3D. The following results were found. The elderly female group showed bigger inclination angle between COM and COP than the adult female group so that the dynamic stability was reduced in walking for the compensation with a bigger stride width. The elderly female group ensure for the necessary forward movement of COM in order to replace the decreased function of ankle and knee joint. If the distance between COM and COP is closer and the energy reduction of a specific joint is reduced, they could prevent the elderly female's falling rate by strengthening of muscles which were related the extension of ankle joint.

The Variability Analysis of the Kinematic Variables of the Lower Extremities During AK(above-knee) Amputee Gait (대퇴절단 환자의 보행 시 양하지의 운동학적 변인에 대한 variability 분석)

  • Seo, Uk-hyeon;Ryu, Ji-seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.131-142
    • /
    • 2005
  • This study was investigated the stability of the AK amputee gait through analysing the variability on kinematic variables between the sound leg and the prosthetic limb. The one male, AK amputee who could walk for himself with his prosthetic limb was participated in this study. Six cameras of the MCU 240 and the QTM(Qualisys Track Manager) software were used for data collecting in this study. The relative angle of both segments was the difference between the absolute angle of the distal segment and the absolute angle of the proximal segment. The coupling angles between the prosthetic limb and the sound leg were caculated on the thigh Flexion/Extension in relative to the shank Flexion/Extension and the shank Flexion/Extension n relative to the foot Flexion/Extension. In order to evaluate the variability of segment and joint angle, C.V. was used, and to evaluate the variability for coupling angles, the Relative motion calculated by vector coding method of the continuous methods was used. As stated, the gait pattern of the prosthetic limb was almost similar gait pattern of the sound leg, but the prosthetic limb showed that the gait pattern of the sound leg and the prosthetic limb were not stable against the sound leg.

Kinematic characteristics of the ankle joint and RPM during the supra maximal training in cycling (사이클링 초최대운동(Supra maximal training)시 RPM과 족관절의 운동학적 분석)

  • Lee, Yong-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.75-83
    • /
    • 2005
  • The purpose of this study was to determine the kinematic characteristics of the ankle joint and RPM(repetition per minutes) during the supra maximal training in cycling. For this study, 8 national representative cyclists, distance cyclists in track and road, were selected. During the super-maximum pedalling, kinematic data were collected using a six-camera(240Hz) Qualisys system. the room coordinate system was right-handed and fixed in the back of a roller for cycle, with right-handed orthogonal segment coordinate systems defined for the leg and foot. Lateral kinematic data were recorded at least for 3 minutes while the participants pedal on a roller. Two-dimensional Cartesian coordinates for each marker were determined at the time of recording using a nonlinear transformation technique. Coordinate data were low-pass filtered using a fourth-order Butterworth recursive filter with cutoff frequency of 15Hz. Variables analyzed in this study were compared using a one factor(time) ANOVA with repeated measures. The results of investigation suggest that the number of rotating pedal was decreased with time phase during the super-maximum pedaling. Maximum angle of the ankle joint showed little in change with time phase compared with minimum angle of that.

The Biomechanical Analysis of the First Hurdling in Men's 110m Hurdle between Skilled and Less-Skilled Hurdle Players (110 m 허들경기의 제 1허들에 대한 우수선수와 비우수선수의 운동역학적 요인 비교)

  • Gil, Ho-Jong;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • The purpose of this study was to provide a fundamental information for enhancing 110m hurdlers' performance through conducting comparative biomechanical analysis between Skilled Group(SG) and Less-Skilled Group(LSG) those who are not in the first section of 110m hurdles. To persue the purpose of this study, total of 10 hurdlers participated. Then they were divided into two groups; SG: five hurdlers who have won awards with 14-second range at 2010 national track and field event, and LSG: five hudlers who did not win any awards with 15-second range. Three-dimensional motion analysis with 12 infrared cameras(Oqus 300, Qualisys) and 1 force plate(Type 9286AA, Kistler) was performed. From this study following conclusions were obtained. 1) For the overall runtime, SG revealed faster elapsed time than that of LSG. 2) At E4, LSG showed greater trunk angle than that of SG. 3) At E3 LSG revealed higher angular velocities than that of SG. 4) No significant differences was found for AP GRF between groups but LSG showed greater VGRF than that of SG.

Effects of Different Car Pedal Systems and Driving Skills on Drivers' Lower Extremity Postures during Fatigue (피로 시 운전 숙련도와 자동차 페달시스템 유형이 운전자의 하지자세에 미치는 영향)

  • Hah, Chong-Ku;Oh, Hyung-Sool;Jang, Young-Kwan;Yi, Jae-Hoon;Oh, Seong-Geun
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.93-105
    • /
    • 2012
  • The purpose of this study was to investigate drivers' postures in different car pedal systems and skilled levels under fatigue. Twenty four subjects participated in this experiment. For three-dimensional analyses, six cameras (Proreflex MCU-240, Qualisys) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D. In conclusion, ROAs of two leg-pedal system were less than one leg pedal system by pattern analysis. Through statistical tests, skilled levels have effects on ROAs(X, Y, Z) of ankle joint at breaking a pedal and ROAs(Y, Z) of ankle joint at accelerating a pedal. Also, car pedal systems have effects on ROAs(Y, Z) of ankle joint, and ROA(Z) of knee joint at accelerating a pedal. In addition, skilled levels and car pedal systems (cross effects) have an effect on ROA(Z) of ankle joint. These findings suggested that we should improve a present single pedal system.

Effects of Changes in Illumination Level and Slope on Fall-Related Biomechanical Risk Factors While Walking for Elderly Women (조도와 주로 변화가 노인 여성 보행 시 낙상 관련 운동역학적 위험요인에 미치는 영향)

  • Jeon, Hyun-Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.413-421
    • /
    • 2015
  • Objective : The purpose of this study was to investigate biomechanical changes of the lower limb including dynamic stability with changes in illumination (300Lx, 150Lx, and 5Lx) and slope (level and $15^{\circ}$ downhill) as risk factors for elderly falls. Method : Fifteen elderly females were selected for this study. Seven infrared cameras (Proreflex MCU 240: Qualisys, Sweden) and an instrumented treadmill (Bertec, USA) surrounded by illumination regulators and lights to change the levels of illumination were used to collect the data. A One-Way ANOVA with repeated measures using SPSS 12.0 was used to analyze statistical differences by the changes in illumination and slope. Statistical significance was set at ${\alpha}=.05$. Results : No differences in the joint movement of the lower limbs were found with changes in illumination (p>.05). The maximum plantar flexion movement of the ankle joints appeared to be greater at 5Lx compared to 300Lx during slope gait (p<.05). Additionally, maximum extension movement of the hip joints appeared to be greater at 5Lx and 150Lx compared to 300Lx during slope gait (p<.05). The maximum COM-COP angular velocity (direction to medial side of the body) of dynamic stability appeared to be smaller at 150Lx and 300Lx compared to 5Lx during level gait (p<.05). The minimum COM-COP angular velocity (direction to lateral side to the body) of dynamic stability appeared smaller at 150Lx compared to 5Lx during level gait (p<.05). Conclusion : In conclusion, elderly people use a stabilization strategy that reduces walk speed and dynamic stability as darkness increases. Therefore, the changes in illumination during gait induce the changes in gait mechanics which may increase the levels of biomechanical risk in elderly falls.

The Biomechanical Analysis of Two and Half Rotation Technic of Penche in Rhythmic Gymnastics (리듬체조 퐁쉐 2회전 1/2턴 기술의 역학적 분석)

  • Seo, Se-Mi;Ryu, Ji-Seon;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.269-279
    • /
    • 2011
  • This study was analyzed the characteristics on the stability of posture while conducting a through two and half rotation technic of pench$\acute{e}$ in rhythmic gymnastics. Two rhythmical gymnastics player(LKH and SSJ) who is a member of the national team were selected, and for obtain the kinematic and kinetic variables were used a ProReflex MCU 240 infrared camera(Qualisys, Sweden) and a Type9286A force platform(Kistler, Switzerland). The mechanical factors were computed by using Visual3D program and Matlab R2009a. During the landing and rotation phase the results showed following characteristics; 1) In medial-lateral and horizontal displacement of the support foot, LKH showed smaller movement than SSJ, but SSJ showed smaller movement than LKH in swing foot. LKH showed bigger movement in medial-lateral axis of COP and vertical axis of COG, but SSJ showed bigger movement in horizontal axis of COP and medial-lateral axis of COG. 2) SSJ showed bigger maximum horizontal and vertical velocity at P1 and P2 than LKH. 3) In the inclination angle of COP and COG, SSJ showed smaller change than LKH, but within medial-lateral tilt of the shoulder, LKH performed rotation motion in horizontal position than SSJ. There was no differences in each force components during rotation, but on landing phase, the results showed a characteristic that SSJ exerted bigger breaking force and vertical force than LKH.

Motion Change of the Trunk and Upper Extremity Segment to Putting the Wrist Support on Throwing in Bowling (볼링 투구 동작 시 손목 지지대 착용에 따른 몸통과 상지 분절의 움직임 변화)

  • Kim, Tae-Sam;Lee, Hoon-Pyo;Han, Hee-Chang
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.33-41
    • /
    • 2006
  • This study was to analysis three dimension angle of the upper extremity segment and trunk to putting the protector in women bowlers. For this study, the subjects selected 4 players of national and university team. All subjects putted in the same wrist support to satisfy the experiment conditions. To get three dimensions position coordination of swing motion used for 6 ProReflex MCU 240 camera produced by Qualisys. After position coordination calculation, Three dimension angle of the trunk and the upper extremity segment calculated for Matlab 6.5. the result is following; In the trunk motion, there were little differences among the subjects in a flexion and extension change. There were a lot of differences in motion change of the abduction-adduction and internal-external rotation, but the motion types translated to the adduction-abduction-adduction and from the internal rotation toward the external rotation. In the upper arm segment the Flexion and extension showed a consistent motion in the down swing and up swing phase. And the motion change of abduction-adduction and pronation-supination showed a abduction-adduction-abduction and pronation-supination change during swing phase. In the forearm segment changes, it showed a lot of differences among the subjects and a similar change with the upper arm segment. Especially, the hand segment showed a supination motion from the backswing apex to release phase, but for increasing a rotation velocity of ball, the hand segment translated toward pronation in follow throw phase.

A Study on Kinematic Analysis of Trunk and Lower Extremities in Stance Phase of Walking according to Turning Direction (보행 방향 전환 시 입각기 하지 및 체간의 운동형상학적 분석)

  • Oh, Tae-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.88-95
    • /
    • 2013
  • Purpose: The purpose of this study was to conduct an analysis of kinematics of lower extremities and trunk in stance phase of walking according to turning direction. Methods: Ten university students (five male, five female) who were in their 20s (mean age was 20.6 years old) participated in this study. Participants did not have participants did not have any problem with skeletal muscular system. We used the "Qualisys motion capture system" for analysis of trunk and lower extremity movement in stance phase of walking according to turning direction. We collected data while subjects walked a distance of 10 m, and at the 6 m line, subjects were required to turn to the left side and the right leg was positioned in stance phase and the left leg was positioned in swing. For data analysis, the SPSS for Windows ver. 20.0 statistics program was used in performance of one way analysis of variance according to turning direction. Results: Significant difference of trunk and lower extremities was observed for turning direction according to walking cycle (p<0.05). Upper trunk movement showed a greater increase at three dimensions than lower trunk, and in heel off phase, pelvic movement showed a greater increase than lower trunk (p<0.05). In 45 degree and 90 degrees of turning direction, all movements of trunk and lower extremities were significantly different among three events of stance phase (p<0.05). Conclusion: We suggest that three-dimensional movement analysis of trunk and lower extremities during turning movement was very important in order to indicate increasing balance or walking ability for people with impaired movement or walking.

Change in Kinetics and Kinematics during 1-Footed Drop Landing with an Increase in Upper Body Weight

  • Lee, Jin-Taek;David, O'Sullivan
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to investigate changes in kinetic and kinematic variables associated with an increase in upper body weight. Eighteen healthy male university students($175.96{\pm}4.19\;cm$, $70.79{\pm}8.26\;kg$) participated. Eight motion analysis cameras(Qualysis Oqus 500) and 2 force AMTI platforms(Advanced Mechanical Technologies Inc. OR6-7, US) were used to record motion and forces during the drop landing at a frequency of 120 Hz and 1200 Hz, respectively. QTM software(Qualisys Track Manager) was used to record the data, and the variables were analyzed with Visual 3D and Matlab 2009. For the drop landing, a box of $4{\times}2{\times}0.46\;m$ was constructed from wood. Knee and ankle maximum flexion angle, knee flexion angle, knee and ankle angle at landing, time for maximum ankle flexion after landing, and time for maximum knee flexion after landing were calculated. There was a significant change in the time for maximum and minimum ground force reaction and the time for maximum dorsal flexion after landing(p<.05) with increasing weight. There was no significant change for the hip, knee, and ankle ROM, whereas there was an increase in the angle ROM as the weight increased, in the order of ankle, knee, and hip ROM. This result shows that the ankle joint ROM increased with increasing weight for shock attenuation during the drop landing. There was a trend for greater ankle ROM than knee ROM, but there was no clear change in the ROM of the hip joint with increasing weight. In conclusion, this study shows the importance of ankle joint flexibility and strength for safe drop landing.