• Title/Summary/Keyword: QSTR

Search Result 3, Processing Time 0.022 seconds

Quantitative Structure Toxicity Relationships (QSTR) of New Herbicidal N-phenyl-3,4-dimethylphthalide Derivatives (새로운 제초성 N-phenyl-3,4-dimethylphthalimide 유도체의 정량적인 구조와 독성과의 관계 (QSTR))

  • Sung, Nack-Do;Yang, Sook-Young;Kang, Hak-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2002
  • Quantitative structure-toxicity relationships (QSTRs) between various physicochemical parameters of substituents in new herbicidal N-phenyl-3,4-dimethylphthalimide derivatives and their discriminate score (DS) for chronic and acute toxicities against mouse and rat evaluated using TOPKAT calculation were discussed quantitatively. From the basis on the findings, it was shown that carcinogenicities of female was higher than that of male and mouse had higher tendency than rat. The STR analyses results of Hansch-Fujita type equations suggested that mouse (female & male) and rat male except rat female are dependent on LUMO energy commonly in carcinogenicity. The selective carcinogenicity factor of two species between male mouse and female mouse is dependent on optimal value (ca. $(L)_{opt.}=5.0{\AA}$) for length of $R_2$-substituent mainly. According to Free-Wilson approach, in the case of rat male, alkyl and aryl substituents were superior and in the other case, contribution of fluoro group substituents were superior to chronic toxicity.

CoMFA Based Quantitative Structure Toxicity Relationship of Azo Dyes

  • Pasha, F.A.;Nam, Kee-Dal;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.145-149
    • /
    • 2007
  • Studies of relationship between structure and toxicity of azo dyes have been performed with comparative molecular field analysis (CoMFA) techniques. 3D QSTR analyses indicate that the steric and electrostatic interactions are important. The steric field based model gives strong correlation ($q^2$=0.57, $r^2$= 0.92). The steric field in conjunction with electrostatic field give more strong correlation ($q^2$=0.57, $r^2$=0.95). All study indicates that a bulky and electronegative group at benzene ring and a small group at position 3 of aniline ring might be significant to reduce the mutagenicity.

Holographic Quantitative Structure-Toxicity Relationships on the Skin Sensitization of Alkyl-3,4- dihydroxybenzoate and N-Alkyl -3,4- dihydroxybenzamide Derivatives (Alkyl-3,4-dihydroxybenzoate와 N-Alkyl-3,4-dihydroxybenzamide 유도체의 피부 감작성에 관한 홀로그래피적인 정량적 구조와 독성과의 관계(HQSTR))

  • Kim Sang-Jin;Sung Nack-Do;Jung Hoon-Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.91-96
    • /
    • 2005
  • Holographic quantitative structure-toxicity relationships (HQSTR) of alkyl-3,4-dihydroxybenzoate (A) and N-alkyl-3,4-dihydroxybenzamide (B) derivatives were analyzed and discussed. The HQSTR model X for the skin sensitivity showed the best predictability based on the cross-validated $r^2_{cv}.$ ($q^2 = 0.744$), non cross-validated, and conventional coefficient ($r^2_{ncv}.$=0.978). The relationships between melanogenesis inhibitory activities and skin sensitization of compounds have a tendency to a reciprocal proportion. Therefore, the more higher melanogenesis inhibitory activities of compounds were, the more lower skin sensitization of compounds became. The side chain, C1 ${\~}$ C3 part of R1-substituents in (A) and (B) did not exhibit any contribution to skin sensitization. Particularly, it is reveals that the skin sensitization of ester (A) were slightly lower (A < B) than that of amide (B) and melanogenesis Inhibitory activities of (A) were slightly higher (A > B) than that of (B). It is founded that the alkyl-3,4-dihydroxybenzoate derivatives (A) were an ideal compound as an ingredient of whitening agents.