CoMFA Based Quantitative Structure Toxicity Relationship of Azo Dyes

  • Pasha, F.A. (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Nam, Kee-Dal (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Cho, Seung-Joo (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology)
  • Published : 2007.06.30

Abstract

Studies of relationship between structure and toxicity of azo dyes have been performed with comparative molecular field analysis (CoMFA) techniques. 3D QSTR analyses indicate that the steric and electrostatic interactions are important. The steric field based model gives strong correlation ($q^2$=0.57, $r^2$= 0.92). The steric field in conjunction with electrostatic field give more strong correlation ($q^2$=0.57, $r^2$=0.95). All study indicates that a bulky and electronegative group at benzene ring and a small group at position 3 of aniline ring might be significant to reduce the mutagenicity.

Keywords

References

  1. Kimura, T., Kodama, M. & Nagata, C. A correlation of the rate of N-hydroxylation of aminoazo dyes with their carcinogenic activity in the rat. Carcinogenesis 3(12):1393-1396 (1982) https://doi.org/10.1093/carcin/3.12.1393
  2. Miller, J. A. & Miller, E. C. The carcinogenicity of 3- methoxy-4-aminoazobenzene and its N-methyl derivatives for extrahepatic tissues of the rat. Cancer Res. 21:1068-1072 (1961)
  3. Mori, Y. et al. Carcinogenicity of 3'-hydroxymethyl- N, N-dimethyl-4-aminoazobenzene in rat liver. Carcinogenesis 1(6):533-535 (1980) https://doi.org/10.1093/carcin/1.6.533
  4. Sugiura, K., Halter, C. R., Kensler, C. J. & Rhoads, C. P. Observations on Rats Fed with Compounds Related to Dimethylaminoazobene. Cancer Research 5(4):235-238 (1945)
  5. Kojima, M., Degawa, M., Hashimoto, Y. & Tada, M. Different effects of DNA adducts induced by carcinogenic and noncarcinogenic azo dyes on in vitro DNA synthesis. Biochem. Biophys. Res. Commun. 179(2): 817-823 (1991) https://doi.org/10.1016/0006-291X(91)91890-O
  6. Ashby, J., Lefevre, P. A. & Callander, R. D. The possible role of azoreduction in the bacterial mutagenicity of 4-dimethylaminoazobenzene (DAB) and 2 of its analogues (6BT and 5I). Mutat. Res. 116(3-4): 271-279 (1983) https://doi.org/10.1016/0165-1218(83)90064-2
  7. Chung, K. T. The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat. Res. 114(3):269-281 (1983) https://doi.org/10.1016/0165-1110(83)90035-0
  8. Hashimoto, Y., Degawa, M., Watanabe, H. K. & Tada, M. Amino acid conjugation of N-hydroxy-4- aminoazobenzene dyes: a possible activation process of carcinogenic 4-aminoazobenzene dyes to the ultimate mutagenic or carcinogenic metabolites. Gann. 72(6):937-943 (1981)
  9. Lin, J. K., Miller, J. A. & Miller, E. C. Structures of hepatic nucleic acid-bound dyes in rats given the carcinogen N-methyl-4-aminoazobenzene. Cancer Res. 35(3):844-850 (1975)
  10. Singh, P. P., Srivastava, H. K. & Pasha, F. A. DFTbased QSAR study of testosterone and its derivatives. Bioorganic & Medicinal Chemistry 12(1):171-177 (2004) https://doi.org/10.1016/j.bmc.2003.11.002
  11. Pasha, F. A., Srivastava, H. K. & Singh, P. P. QSAR study of estrogens with the help of PM3-based descriptors. International Journal of Quantum Chemistry 104(1):87-100 (2005) https://doi.org/10.1002/qua.20569
  12. Pasha, F. A., Srivastava, H. K. & Singh, P. P. Comparative QSAR study of phenol derivatives with the help of density functional theory. Bioorganic & Medicinal Chemistry 13(24):6823-6829 (2005) https://doi.org/10.1016/j.bmc.2005.07.064
  13. Ashek, A. & Cho, S. J. A combined approach of docking and 3D QSAR study of beta-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Bioorganic & Medicinal Chemistry 14(5):1474-1482 (2006) https://doi.org/10.1016/j.bmc.2005.10.001
  14. Ashek, A., Lee, C., Park, H. & Cho, S. J. 3D QSAR studies of dioxins and dioxin-like compounds using CoMFA and CoMSIA. Chemosphere 65(3):521-529 (2006) https://doi.org/10.1016/j.chemosphere.2006.01.010
  15. Hansch, C. The QSAR paradigm in the design of less toxic molecules. Drug Metab. Rev. 15(7):1279-1294 (1984) https://doi.org/10.3109/03602538409029960
  16. Pasha, F. A., Srivastava, H. K., Srivastava, A. & Singh, P. P. QSTR study of small organic molecules against Tetrahymena pyriformis. Qsar & Combinatorial Science 26(1):69-84 (2007) https://doi.org/10.1002/qsar.200630010
  17. Garg, A., Bhat, K. L. & Bock, C. W. Mutagenicity of aminoazobenzene dyes and related structures: a QSAR /QPAR investigation. Dyes and Pigments 55(1):35-52 (2002) https://doi.org/10.1016/S0143-7208(02)00070-0
  18. Cramer, R. D., Patterson, D. E. & Bunce, J. D. Comparative Molecular-Field Analysis (Comfa) .1. Effect of Shape on Binding of Steroids to Carrier Proteins. Journal of the American Chemical Society 110(18): 5959-5967 (1988) https://doi.org/10.1021/ja00226a005
  19. Kim, K. H., Greco, G. & Novellino, E. A critical review of recent CoMFA applications. Perspectives in Drug Discovery and Design 12:257-315 (1988) https://doi.org/10.1023/A:1017010811581
  20. Clark, M., Cramer, R. D. & Vanopdenbosch, N. Validation of the General-Purpose Tripos 5.2 Force- Field. Journal of Computational Chemistry 10(8): 982-1012 (1989) https://doi.org/10.1002/jcc.540100804
  21. Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods. 2. Applications. Journal of Computational Chemistry 10(2):221-264 (1989) https://doi.org/10.1002/jcc.540100209
  22. Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods. 1. Method. Journal of Computational Chemistry 10(2):209-220 (1989) https://doi.org/10.1002/jcc.540100208