• Title/Summary/Keyword: QSAR.

Search Result 265, Processing Time 0.023 seconds

Antifungal activity of N-[1-(benzotriazol-1-yl)aryl]arylamine derivatives and quntitative structure-activity relationships(QSAR) (N-[1-(benzotriazol-1-yl)aryl]arylamine 유도체의 항균성과 정량적 구조활성 관계(QSAR))

  • Sung, Nack-Do;Kim, Kyoung-Hoon;Choi, Woo-Young;Kim, Hong-Ki
    • Applied Biological Chemistry
    • /
    • v.35 no.1
    • /
    • pp.14-22
    • /
    • 1992
  • A series of new N-[1-(benzotriazol-1-yl)aryl]arylamine derivatives were synthesized and their antifungal activities $(pI_{50})$ in vitro against Pyricularia oryzae, Fusarium oxysporum f. sp. sesami, Valsa ceratosperma and Botrytis cinerea were dertermined by the agar medium dilution method. From the results of the quantitative structure-activity relationships $(QSAR_S)$ analysis, $hydrophobicity({\pi})$, $electronic({\Sigma\sigma})$ and molar $refractivity({\Sigma}M_R)$ parameter of X & Y-substituents on the phenyl group were also shown to be important factor in determining the variation in the antifungal activity. 4-Bromo group substituents (1d & 2b) were the most effective compounds and the $half-life(T_{1/2})$ on the hydrolysis of X(1) at netural pH was about 1.5 day. Molecular orbital(MO) functions of substrate compound, linear free energy relationships$(LFER_S)$ on the antifungal reactivity arid the results of molecular design were also discussed.

  • PDF

Toxicity Prediction using Three Quantitative Structure-activity Relationship (QSAR) Programs (TOPKAT®, Derek®, OECD toolbox) (TOPKAT®, Derek®, OECD toolbox를 활용한 화학물질 독성 예측 연구)

  • Lee, Jin Wuk;Park, Seonyeong;Jang, Seok-Won;Lee, Sanggyu;Moon, Sanga;Kim, Hyunji;Kim, Pilje;Yu, Seung Do;Seong, Chang Ho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.457-464
    • /
    • 2019
  • Objectives: Quantitative structure-activity relationship (QSAR) is one of the effective alternatives to animal testing, but its credibility in terms of toxicity prediction has been questionable. Thus, this work aims to evaluate its predictive capacity and find ways of improving its credibility. Methods: Using $TOPKAT^{(R)}$, OECD toolbox, and $Derek^{(R)}$, all of which have been applied world-wide in the research, industrial, and regulatory fields, an analysis of prediction credibility markers including accuracy (A), sensitivity (S), specificity (SP), false negative (FN), and false positive (FP) was conducted. Results: The multi-application of QSARs elevated the precision credibility relative to individual applications of QSARs. Moreover, we found that the type of chemical structure affects the credibility of markers significantly. Conclusions: The credibility of individual QSAR is insufficient for both the prediction of chemical toxicity and regulation of hazardous chemicals. Thus, to increase the credibility, multi-QSAR application, and compensation of the prediction deviation by chemical structure are required.

Nonlinear QSAR Study of Xanthone and Curcuminoid Derivatives as α-Glucosidase Inhibitors

  • Saihi, Youcef;Kraim, Khairedine;Ferkous, Fouad;Djeghaba, Zeineddine;Azzouzi, Abdelkader;Benouis, Sabrina
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1643-1650
    • /
    • 2013
  • A non linear QSAR model was constructed on a series of 57 xanthone and curcuminoide derivatives as ${\alpha}$-glucosidase inhibitors by back-propagation neural network method. The neural network architecture was optimized to obtain a three-layer neural network, composed of five descriptors, nine hidden neurons and one output neuron. A good predictive determination coefficient was obtained (${R^2}_{Pset}$ = 86.7%), the statistical results being better than those obtained with the same data set using a multiple regression analysis (MLR). As in the MLR model, the descriptor MATS7v weighted by Van der Waals volume was found as the most important independent variable on the ${\alpha}$-glucosidase inhibitory.

3D QSAR (3 Dimensional Structure Activity Relationship) Study of Mutagen X

  • Yoon, Hae-Seok;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • Mutagen X (MX) exists in our drinking water as the bi-products of chlorine disinfection. Being one of the most potent mutagen, it attracted much attention from many researchers. MX and its analogs are tested and modeled by quantitative structure activity relationship (QSAR) methods. As a result, factors affecting this class of compounds have been found to be steric and electrostatic effects. We tried to collect all the data available from the literature. The quantitative structure-activity relationship of a set of 29 MX was analyzed using Molecular Field Analysis (MFA) and Receptor Surface Analysis (RSA). The best models gave $q^{2}=0.918,\;r^{2}=0.949$ for MFA and $q^{2}=0.893,\;r^{2}=0.954$ for RSA. The models indicate that an electronegative group at C6 position of the furanone ring increases mutagenicity.

A CoMFA Study of Quinazoline-based Anticancer Agents

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.214-220
    • /
    • 2015
  • Cancer has emerged as one of the leading cause of deaths worldwide. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed on a series of quinazoline-based anticancer agents. Purpose of the study is to understand the structural basis for their inhibitory activity. Comparative molecular field analysis (CoMFA) technique was employed to develop 3D-QSAR model. Ligand-based alignment scheme was used to generate a reliable CoMFA model. The model produced statistically significant results with a cross-validated correlation coefficient ($q^2$) of 0.589 and a non-cross-validated correlation coefficient ($r^2$) of 0.928. Model was further validated by bootstrapping and progressive scrambling analysis. This study could assist in the design of novel and more potent anticancer agents.

3D-QSAR Studies of 8-Substituted-2-aryl-5-alkylaminoquinolines as Corticotropin-releasing Factor-1 Receptor Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.176-183
    • /
    • 2015
  • Corticotropin-releasing actor receptors (CRFRs) activates the hypothalamic pituitary adrenal axis, one of the 2 parts of the fight or flight response to stress. Increased CRH production has is associated with Alzheimer's disease and major depression and hypoglycemia. In this study, we report the important structural and chemical parameters for CRFR inhibitors using the derivatives of 8-substituted-2-aryl-5-alkylaminoquinolines. A 3D QSAR study, Comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with a $q^2$ of 0.607 with 6 components and $r^2$ of 0.991. The statistical parameters from the generated CoMFA models indicated that the data are well fitted and have high predictive ability. The contour map resulted from the CoMFA models might be helpful in the future designing of novel and more potent CRFR derivatives.

3D-QSAR Study of Melanin Inhibiting (S)-(+)-Decursin and its Analogues by Pharmacophore Mapping

  • Lee, Kyeong;Jung, Sang-Won;Naik, Ravi;Cho, Art E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.149-152
    • /
    • 2012
  • The (S)-(+)-decursin and its analogues are reported as potent inhibitors of melanin production in B16 murine melanoma cells. In order to understand the factors responsible for potency as well as inhibition of potency of (S)-(+)-decursin and its analogues, three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed. Since receptor structures are not available, a pharmacophore model was constructed. Using PHASE, we generated 3 different models and selected the seven-site model, which returned excellent statistical values ($r^2$ = 0.9127, $Q^2$ = 0.6878, Pearson-R = 0.9014). Using the generated pharmacophore model, we screened a natural products library and obtained 4'-epi-decursin as the most related compound. 4'-epidecursin is similar to (S)-(+)-decursin, but shows additional interaction possibilities with tyrosinase. The study thus sheds some light on possibility of developing more potent tyrosinase inhibitors.

Modeling Aided Lead Design of FAK Inhibitors

  • Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.266-272
    • /
    • 2011
  • Focal adhesion kinase (FAK) is a potential target for the treatment of primary cancers as well as prevention of tumor metastasis. To understand the structural and chemical features of FAK inhibitors, we report comparative molecular field analysis (CoMFA) for the series of 7H-pyrrolo(2,3-d)pyrimidines. The CoMFA models showed good correlation between the actual and predicted values for training set molecules. Our results indicated the ligand-based alignment has produced better statistical results for CoMFA ($q^2$ = 0.505, $r^2$ = 0.950). Both models were validated using test set compounds, and gave good predictive values of 0.537. The statistical parameters from the generated 3D-QSAR models were indicated that the data are well fitted and have high predictive ability. The contour map from 3D-QSAR models explains nicely the structure-activity relationships of FAK inhibitors and our results would give proper guidelines to further enhance the activity of novel inhibitors.

Quantitative Structure-Activity Relationships and Molecular Docking Studies of P56 LCK Inhibitors

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.266-272
    • /
    • 2006
  • Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 67 molecules of 2-amino-benzothiazole-6-anilide derivatives against lymphocyte-specific protein tyrosine kinase (P56 LCK). The molecular field analysis (MFA) and receptor surface analysis (RSA) were employed for QSAR studies and the predictive ability of the model was validated by 15 test set molecules. Structure-based investigations using molecular docking simulation were performed with the crystal structure of P56 LCK. Good correlation between predicted fitness scores versus observed activities was demonstrated. The results suggested that the nature of substitutions at the 2-amino and 6-anilide positions were crucial in enhancing the activity, thereby providing new guidelines for the design of novel P56 LCK inhibitors.

3D-QSAR of Non-peptidyl Caspase-3 Enzyme Inhibitors Using CoMFA and CoMSIA

  • Lee, Do-Young;Hyun, Kwan-Hoon;Park, Hyung-Yeon;Lee, Kyung- A.;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.273-276
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationship studies for a series of isatin derivatives as a nonpeptidyl caspase-3 enzyme inhibitor were investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The first approach of non-peptidyl small molecules by 3D QSAR may be useful in guiding further development of potent caspase-3 inhibitors.