• 제목/요약/키워드: QSAR modeling

검색결과 22건 처리시간 0.023초

정량적 구조-활성 상관 관계와 생리학 기반 약물동태를 사용한 새로운 선도물질 최적화 전략 (Novel Lead Optimization Strategy Using Quantitative Structure-Activity Relationship and Physiologically-Based Pharmacokinetics Modeling)

  • 변진주;박민호;신석호;신영근
    • 약학회지
    • /
    • 제59권4호
    • /
    • pp.151-157
    • /
    • 2015
  • The purpose of this study is to demonstrate how lead compounds are best optimized with the application of in silico QSAR and PBPK modeling at the early drug discovery stage. Several predictive QSAR models such as $IC_{50}$ potency model, intrinsic clearance model and brain penetration model were built and applied to a set of virtually synthesized library of the BACE1 inhibitors. Selected candidate compounds were also applied to the PBPK modeling for comparison between the predicted animal pharmacokinetic parameters and the observed ones in vivo. This novel lead optimization strategy using QSAR and PBPK modelings could be helpful to expedite the drug discovery process.

QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1

  • Pasha, F.A.;Muddassar, M.;Jung, Hwan-Won;Yang, Beom-Seok;Lee, Cheol-Ju;Oh, Jung-Soo;Cho, Seung-Joo;Cho, Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.647-655
    • /
    • 2008
  • Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR (quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group around ring B may enhance the inhibitory activity.

QSAR을 이용한 지방족 할로겐화합물 흡착 및 탈착 계수의 예측 (Prediction of Sorption/Desorption Parameters of Halogenated Aliphatic Compounds Using QSAR)

  • 김종오;박증석;최연돈
    • 한국환경과학회지
    • /
    • 제11권7호
    • /
    • pp.737-742
    • /
    • 2002
  • Sorption and desorption is an important phenomenon to determine the fate of halogenated aliphatic hydrocarbons in the aqueous phase. This study was conducted to develope a predictive equation capable of estimating the sorption and desorption potentials of halogenated aliphatic hydrocarbons onto the sludge from activated process, sediment, and clay. It has shown that the sorption and desorption parameters can be accurately estimated using Quantitative Structural Activity Relationship(QSAR) models based on molecular connectivity indexes of test compounds. The QSAR model could be applied to predict the sorption and desorption capacity of the other halogenated aliphatic hydrocarbons. The QSAR modeling would provide a useful tool to predict the sorption and desorption capacity without time-consuming experiments.

Pharmacophore Modelling, Quantitative Structure Activity Relationship (QSAR) and Docking Studies of Pyrimidine Analogs as Potential Calcium Channel Blockers

  • Choudhari, Prafulla B.;Bhatia, Manish S.;Jadhav, Swapnil D.
    • 대한화학회지
    • /
    • 제57권1호
    • /
    • pp.99-103
    • /
    • 2013
  • The present communication deals with the Pharmacophore modeling, 3D QSAR and docking analysis on series of Pyrimidine derivatives as potential calcium channel blockers. The computational studies showed hydrogen bond donor, hydrogen bond acceptor, and hydrophobic group are important features for calcium channel blocking activity. These studies showed that Pyrimidine scaffold can be utilized for designing of novel calcium channels blockers for CVS disorders.

Molecular Modeling of Small Molecules as BVDV RNA-Dependent RNA Polymerase Allosteric Inhibitors

  • Chai, Han-Ha;Lim, Dajeong;Chai, Hee-Yeoul;Jung, Eunkyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.837-850
    • /
    • 2013
  • Bovine viral diarrhea virus (BVDV), a major pathogen of cattle, is a well-characterized pestivirus which has been used as a good model virus for HCV. The RNA-dependent RNA polymerase (RdRp) plays a key role in the RNA replication process, thus it has been targeted for antivirus drugs. We employed two-dimensional quantitative structure-activity relationship (2D-QSAR) and molecular field analysis (MFA) to identify the molecular substructure requirements, and the particular characteristics resulted in increased inhibitory activity for the known series of compounds to act as effective BVDV inhibitors. The 2D-QSAR study provided the rationale concept for changes in the structure to have more potent analogs focused on the class of arylazoenamines, benzimidazoles, and acridine derivatives with an optimal subset of descriptors, which have significantly contributed to overall anti-BVDV activity. MFA represented the molecular patterns responsible for the actions of antiviral compound at their receptors. We conclude that the polarity and the polarizability of a molecule play a main role in the inhibitory activity of BVDV inhibitors in the QSAR modeling.

CMC 고정화 Photobacterium phosphoreum 의 생체발광량을 이용한 독성농도(EC50)의 QSAR 모델 (QSAR Modeling of Toxicant Concentrations(EC50) on the Use of Bioluminescence Intensity of CMC Immobilized Photobacterium Phosphoreum)

  • 이용제;허문석;이우창;전억한
    • KSBB Journal
    • /
    • 제15권3호
    • /
    • pp.299-306
    • /
    • 2000
  • 발광미생물 (luminescent bacteria)인 P. phosphoreum을 이용한 수계의 환경독성물질로 지정된 ethane, benzene, phenol류에 chlorine이 치환된 l47~의 독성강도를 생체발광의 50%저하시키 는 독성농도인 ECso값을 통한 생물학적 정량을 하였을 때 phenol) benzene) ethane 의 순서로 독성깅도가 높게 산출되 어졌으며, 특히 지환된 chlo괴ne의 수가 증가할수록 독성강도가 강하다는 것을 알 수 있었다. 또한 산출된 ECso값을 이용허여 독성물질들의 물려화학적 parameter특성인 octan이(water 분할계 수 (log P), 용해도 (log S) 및 solvatochromic parameter의 떤관쟁 을 QSAR 모탤링하였으며 실힘을 통하지 않고, 독성의 독성강도 를 예측할 수 있는 회기식을 다음과 같이 산출하였다. $log EC_{50} =2.48 + 0.914 log S(n=9 R2=85.5% RE=0.378) log EC_{50}=0.35 - 4.48 Vi/100 + 2.84 \pi^* +9.46{\beta}m-4.48am (n =14 R2=98.2% RE=0.012) log EC_{50} =2.64 -1.66 log P(n=5, R2=98.8% RE=0.16) log EC_{50}=3.44 -1.09 log P(n=9 R2= 80.8% Re=0.207)$. QSAR 모델은 QSAR 검증식을 통하여 확인된 다중회기식을 이용함으로 실험하지 않은 독성물 질이 갖는 물리화학적인 특성을 대입하여 log Eeso값을 예측할 수 있으므로 경제적, 시간적으로 이익을 얻을 수 있는 모델이다.

  • PDF

Modeling Aided Lead Design of FAK Inhibitors

  • Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제4권4호
    • /
    • pp.266-272
    • /
    • 2011
  • Focal adhesion kinase (FAK) is a potential target for the treatment of primary cancers as well as prevention of tumor metastasis. To understand the structural and chemical features of FAK inhibitors, we report comparative molecular field analysis (CoMFA) for the series of 7H-pyrrolo(2,3-d)pyrimidines. The CoMFA models showed good correlation between the actual and predicted values for training set molecules. Our results indicated the ligand-based alignment has produced better statistical results for CoMFA ($q^2$ = 0.505, $r^2$ = 0.950). Both models were validated using test set compounds, and gave good predictive values of 0.537. The statistical parameters from the generated 3D-QSAR models were indicated that the data are well fitted and have high predictive ability. The contour map from 3D-QSAR models explains nicely the structure-activity relationships of FAK inhibitors and our results would give proper guidelines to further enhance the activity of novel inhibitors.

Computational Drug Discovery Approach Based on Nuclear Factor-κB Pathway Dynamics

  • Nam, Ky-Youb;Oh, Won-Seok;Kim, Chul;Song, Mi-Young;Joung, Jong-Young;Kim, Sun-Young;Park, Jae-Seong;Gang, Sin-Moon;Cho, Young-Uk;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4397-4402
    • /
    • 2011
  • The NF-${\kappa}B$ system of transcription factors plays a crucial role in inflammatory diseases, making it an important drug target. We combined quantitative structure activity relationships for predicting the activity of new compounds and quantitative dynamic models for the NF-${\kappa}B$ network with intracellular concentration models. GFA-MLR QSAR analysis was employed to determine the optimal QSAR equation. To validate the predictability of the $IKK{\beta}$ QSAR model for an external set of inhibitors, a set of ordinary differential equations and mass action kinetics were used for modeling the NF-${\kappa}B$ dynamic system. The reaction parameters were obtained from previously reported research. In the IKKb QSAR model, good cross-validated $q^2$ (0.782) and conventional $r^2$ (0.808) values demonstrated the correlation between the descriptors and each of their activities and reliably predicted the $IKK{\beta}$ activities. Using a developed simulation model of the NF-${\kappa}B$ signaling pathway, we demonstrated differences in $I{\kappa}B$ mRNA expression between normal and different inhibitory states. When the inhibition efficiency increased, inhibitor 1 (PS-1145) led to long-term oscillations. The combined computational modeling and NF-${\kappa}B$ dynamic simulations can be used to understand the inhibition mechanisms and thereby result in the design of mechanism-based inhibitors.