• Title/Summary/Keyword: QRS 폭

Search Result 8, Processing Time 0.026 seconds

Classification of Normal and Abnormal QRS-complex for Home Health Management System (재택건강관리 시스템을 위한 정상 및 비정상 심전도의 분류)

  • 최안식;우응제;박승훈;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.129-135
    • /
    • 2004
  • In the home health management system, we often face the situation to handle biological signals that are frequently measured from normal subjects. In such a case, it is necessary to decide whether the signal at a certain moment is normal or abnormal. Since ECC is one of the most frequently measured biological signals, we describe algorithms that detect QRS-complex and decide whether it is normal or abnormal. The developed QRS detection algorithm is a simplified version of the conventional algorithm providing enough performance for the proposed application. The developed classification algorithm that detects abnormal from mostly normal beats is based on QRS width, R-R interval and QRS shape parameter using Karhunen-Loeve transformation. The simplified QRS detector correctly detected about 99% of all beats in the MTT/BIH ECG database. The classification algorithm correctly classified about 96% of beats as normal or abnormal. The QRS detection and classification algorithm described in this paper could be used in home health management system.

A Design of Real-Time QRS Detection in Physio-Module for Echocardiography (심초음파용 실시간 심전도 QRS 검출 모듈에 관한 연구)

  • Jang, Won-Seuk;Kim, Nam-Hyun;Kim, Eong-Sok;Jeon, Dae-Keun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • In this study, we investigated the performance of real-time QRS complex detection algorithm in physio-module for echocardiography. The performance of QRS detection module in echocardiography was evaluated according to international standard, EC-13 and we compared with commercialized physio-module with QRS complex detection. In this study, we can get performance of QRS complex detection, pacer pulse detection, Tall t-wave rejection and arrhythmia detection within EC-13's criteria and we can get improved QRS trigger delay time and baseline wondering rejection times in compared with commercialized physio-module.

Arrhythmia Classification based on Binary Coding using QRS Feature Variability (QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1947-1954
    • /
    • 2013
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

Efficient QRS Detection and PVC(Premature Ventricular Contraction) Classification based on Profiling Method (효율적인 QRS 검출과 프로파일링 기법을 통한 심실조기수축(PVC) 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.705-711
    • /
    • 2013
  • QRS detection of ECG is the most popular and easy way to detect cardiac-disease. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, the design of algorithm that exactly detects QRS wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, efficient QRS detection and PVC classification based on profiling method is presented in this paper. For this purpose, we detected QRS through the preprocessing method using morphological filter, adaptive threshold, and window. Also, we applied profiling method to classify each patient's normal cardiac behavior through hash function. The performance of R wave detection, normal beat and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.77% in R wave detection and the rate of 0.65% in normal beat classification error and 93.29% in PVC classification.

An Efficient VEB Beats Detection Algorithm Using the QRS Width and RR Interval Pattern in the ECG Signals (ECG신호의 QRS 폭과 RR Interval의 패턴을 이용한 효율적인 VEB 비트 검출 알고리듬)

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • In recent days, the demand for the remote ECG monitoring system has been increasing and the automation of the monitoring system is becoming quite of a concern. Automatic detection of the abnormal ECG beats must be a necessity for the successful commercialization of these real time remote ECG monitoring system. From these viewpoints, in this paper, we proposed an automatic detection algorithm for the abnormal ECG beats using QRS width and RR interval patterns. In the previous research, many efforts have been done to classify the ECG beats into detailed categories. But, these approaches have disadvantages such that they produce lots of misclassification errors and variabilities in the classification performance. Also, they require large amount of training data for the accurate classification and heavy computation during the classification process. But, we think that the detection of abnormality from the ECG beats is more important that the detailed classification for the automatic ECG monitoring system. In this paper, we tried to detect the VEB which is most frequently occurring among the abnormal ECG beats and we could achieve satisfactory detection performance when applied the proposed algorithm to the MIT/BIH database.

The Detection of PVC based Rhythm Analysis and Beat Matching (리듬분석과 비트매칭을 통한 조기심실수축(PVC) 검출)

  • Jeon, Hong-Kyu;Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2391-2398
    • /
    • 2009
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and prevention of possible life threatening cardiac diseases. Most of the algorithms detecting PVC reported in literature is not always feasible due to the presence of noise and P wave making the detection difficult, and the process being time consuming and ineffective for real time analysis. To solve this problem, a new approach for the detection of PVC is presented based rhythm analysis and beat matching in this paper. For this purpose, the ECG signals are first processed by the usual preprocessing method and R wave was detected. The algorithm that decides beat type using the rhythm analysis of RR interval and beat matching of QRS width is developed. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate sensitivity of 99.74%, positive predictivity of 99.81% and sensitivity of 93.91%, positive predictivity of 96.48% accuracy respectively for R wave and PVC detection.

The classification of arrhythmia using similarity analysis between unit patterns at ECG signal (ECG 신호에서 단위패턴간 유사도분석을 이용한 부정맥 분류 알고리즘)

  • Bae, Junghyoun;Lim, Seung-Ju;Kim, Jeong-Ju;Park, Sung-Dae;Kim, Jeong-Do
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1399-1402
    • /
    • 2011
  • 본 논문에서는 조기 심실 수축과 조기 심방 수축을 검출함에 있어 정밀한 QRS 구간의 폭, 정확한 P파와 T파의 크기 및 위치를 크게 요구하지 않고, 데이터의 가공과 복잡한 알고리즘의 사용에 의해 발생하는 ECG 데이터의 변형과 손실을 최소화할 수 있으며, 또한 개인차 때문에 발생할 수 있는 오류를 최소화하기 위한 알고리즘을 제안한다. 이를 위해 ECG 신호를 각각의 단위 파형으로 분리한 후, 정상 R-R 간격을 가지는 파형을 기준으로 기준파형을 만들어, 각 파형과 기준파형사이의 패턴 대조 및 유사도 분석을 통해 조기 심실수축과 조기심방수축을 검출할 수 있도록 하였다.

Follow-up in Adult after Total Repair of Tetralogy of Fallot (수술 후 성인 Fallot 4징 환자의 임상적 고찰)

  • Jang, Gi Young;Kim, Sun Young;Moon, Joo Ryung;Huh, Joon;Kang, I-Seok;Park, Seung Woo;Jun, Tae Gook;Park, Pyo Won;Lee, Heung Jae
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.661-667
    • /
    • 2003
  • Purpose : This study was performed to find the chief clinical problems associated with the ages of adult patients of tetralogy of Fallot(TOF) who had undergone total correction. Methods : Of the 30 patients who were registered at the Grown-Up Congenital Heart Disease (GUCH) Clinic of Samsung Medical Center for TOF, a retrospective investigation was carried out on 28 patients who underwent total correction. Results : Mean age at retrospective study was 30.8(range : 16-53) years old. Age at total correction was 15.8(range : 2-49) years old. Problems after corrective surgery were assessed. They were arrhythmia, pulmonary valve regurgitation, left pulmonary artery stenosis, residual ventricular septal defect, mitral valve regurgitation, tricuspid valve regurgitation, right ventricle outflow tract obstruction, aortic valve regurgitation, infective endocarditis and protein losing enteropathy. After repair of TOF, such arrhythmias as atrial arrhythmia and AV conduction disturbances were observed in some patients. Cardiomegaly was found significantly in the subjects with arrhythmia(P<0.05), and arrhythmia was less observed in patients who underwent surgery at a young age. Eight patients required a reoperation; the main indications were residual ventricular septal defect, right ventricle outflow tract obstruction and peripheral pulmonary artery stenosis. Conclusion : The majority of the patients seemed to live normal lives after Tetralogy of Fallot repair. However, as residual anatomic and functional abnormalities exist postoperatively, continued careful follow-up is needed to detect and correct structural and functional abnormalities.