• Title/Summary/Keyword: QR Decomposition

Search Result 82, Processing Time 0.022 seconds

Vibration Analysis of a Bogie Using Linearized Dynamic Equations of a Multibody System (다물체계의 선형 동역학식을 이용한 대차의 진동 해석)

  • Kang, Juseok
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.321-327
    • /
    • 2014
  • In this paper, linear dynamic equations are derived from nonlinear dynamic equations of constrained multibody systems using the QR decomposition method. The derived linear equations are applied to a railway vehicle bogie. The vibration characteristics of the railway vehicle are investigated by calculating the natural mode and transfer function of the bogie frame in relation to rail-roughness input. The main modes of the bogie were found below 35Hz, and the local modes above 198Hz. The magnitude of the vertical transfer function varied with the forward velocity due to vertical and pitch modes, which were influenced by the forward velocity. The magnitude of the lateral transfer function was negligibly small, and the mode in the longitudinal direction was excited for longitudinal transfer function regardless of the forward velocity.

An Efficient Signal Detection Scheme using QRD-M and QRPIC (QRD-M 및 QRPIC 을 이용한 효율적인 신호 검출 기법)

  • Kim, Jae-Jeong;You, Young-Hwan;Song, Hyoung-Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.221-222
    • /
    • 2013
  • 본 논문에서는 채널상태에 기반하여 QRD-M (QR-decomposition based M algorithm)및 QRPIC (parallel interference cancellation using QR-decomposition)을 이용한 검출 기법을 제안한다. 기존의 QRD-M 검출기법은 성능은 좋지만 복잡도가 높고, QRPIC 기법은 성능은 떨어지지만 복잡도가 낮다. 제안된 검출 기법은 채널상태에 따라 QRD-M 검출 기법을 사용할지 QRPIC 검출 기법을 사용할지 결정하게 되므로 기존의 QRD-M 검출 기법보다 성능은 조금 감소하지만 복잡도가 크게 낮아진다.

  • PDF

A Simplified Efficient Algorithm for Blind Detection of Orthogonal Space-Time Block Codes

  • Pham, Van Su;Mai, Linh;Lee, Jae-Young;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.261-265
    • /
    • 2008
  • This work presents a simplified efficient blind detection algorithm for orthogonal space-time codes(OSTBC). First, the proposed decoder exploits a proper decomposition approach of the upper triangular matrix R, which resulted from Cholesky-factorization of the composition channel matrix, to form an easy-to-solve blind detection equation. Secondly, in order to avoid suffering from the high computational load, the proposed decoder applies a sub-optimal QR-based decoder. Computer simulation results verify that the proposed decoder allows to significantly reduce computational complexity while still satisfying the bit-error-rate(BER) performance.

Efficient Detection of Space-Time Block Codes Based on Parallel Detection

  • Kim, Jeong-Chang;Cheun, Kyung-Whoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.100-107
    • /
    • 2011
  • Algorithms based on the QR decomposition of the equivalent space-time channel matrix have been proved useful in the detection of V-BLAST systems. Especially, the parallel detection (PD) algorithm offers ML approaching performance up to 4 transmit antennas with reasonable complexity. We show that when directly applied to STBCs, the PD algorithm may suffer a rather significant SNR degradation over ML detection, especially at high SNRs. However, simply extending the PD algorithm to allow p ${\geq}$ 2 candidate layers, i.e. p-PD, regains almost all the loss but only at a significant increase in complexity. Here, we propose a simplification to the p-PD algorithm specific to STBCs without a corresponding sacrifice in performance. The proposed algorithm results in significant complexity reductions for moderate to high order modulations.

Fixed-Complexity Sphere Encoder for Multi-User MIMO Systems

  • Mohaisen, Manar;Chang, Kyung-Hi
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this paper, we propose a fixed-complexity sphere encoder (FSE) for multi-user multi-input multi-output (MU-MIMO) systems. The proposed FSE accomplishes a scalable tradeoff between performance and complexity. Also, because it has a parallel tree-search structure, the proposed encoder can be easily pipelined, leading to a tremendous reduction in the precoding latency. The complexity of the proposed encoder is also analyzed, and we propose two techniques that reduce it. Simulation and analytical results demonstrate that in a $4{\times}4$ MU-MIMO system, the proposed FSE requires only 11.5% of the computational complexity needed by the conventional QR decomposition with M-algorithm encoder (QRDM-E). Also, the encoding throughput of the proposed encoder is 7.5 times that of the QRDM-E with tolerable degradation in the BER performance, while achieving the optimum diversity order.

A Reduced Complexity QRM-MLD for Spatially Multiplexed MIMO Systems (공간다중화 방식을 사용하는 다중 안테나 시스템을 위한 감소된 계산량의 QRM-MLD 신호검출기법)

  • Im, Tae-Ho;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1C
    • /
    • pp.43-50
    • /
    • 2007
  • In the paper, we address QRM-MLD (Maximum Likelihood Detection with QR Decomposition and M-algorithm) signal detection method for spatially multiplexed MIMO (Multiple Input Multiple Output) systems. Recently, the QRM-MLD signal detection method which can achieve 1Gbps transmission speed for next generation mobile communication was implemented in a MIMO testbed for the mobile moving at a pedestrian speed. In the paper, we propose a novel signal detection method 'reduced complexity QRM-MLD' that achieves identical error performance as the QRM-MLD while reducing the computational complexity significantly. We rigorously compare the two detection methods in terms of computational complexity to show the complexity reduction of the proposed method. We also perform a set of computer simulations to demonstrate that two detection methods achieve identical error performance.

An Improved Ordering Method for MIMO Signal Detection Using QR Decomposition and Successive Interference Cancellation (QR 분해 및 순차적 간섭제거 기반의 MIMO 신호검출 기법을 위한 향상된 순서화 방법)

  • Bak, Sang-Hyun;Kim, Jae-Kwon;Yang, Won-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.1010-1015
    • /
    • 2009
  • In this paper, we propose a novel detection ordering technique for MIMO signal detection methods based on QR decomposition and successive interference cancellation (SIC). Recently, new signal detection methods for spatially multiplexed (SM) MIMO systems were proposed, where all the constellation points are tried as the first layer symbol, and the remaining layer symbols are estimated via SIC, producing candidate vectors. Finally, the ML metric values are calculated for the candidate vectors, that are again used to select the best symbol vector. It was also shown that the ordering method in the conventional V-BLAST is not suitable to these signal detection methods. In this paper, we propose a novel ordering method, and we show via computer simulations that the proposed ordering method improves the error performance.

The Segmented Polynomial Curve Fitting for Improving Non-linear Gamma Curve Algorithm (비선형 감마 곡선 알고리즘 개선을 위한 구간 분할 다항식 곡선 접합)

  • Jang, Kyoung-Hoon;Jo, Ho-Sang;Jang, Won-Woo;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • In this paper, we proposed non-linear gamma curve algorithm for gamma correction. The previous non-linear gamma curve algorithm is generated by the least square polynomial using the Gauss-Jordan inverse matrix. However, the previous algorithm has some weak points. When calculating coefficients using inverse matrix of higher degree, occurred truncation errors. Also, only if input sample points are existed regular interval on 10-bit scale, the least square polynomial is accurately works. To compensate weak-points, we calculated accurate coefficients of polynomial using eigenvalue and orthogonal value of mat11x from singular value decomposition (SVD) and QR decomposition of vandemond matrix. Also, we used input data part segmentation, then we performed polynomial curve fitting and merged curve fitting results. When compared the previous method and proposed method using the mean square error (MSE) and the standard deviation (STD), the proposed segmented polynomial curve fitting is highly accuracy that MSE under the least significant bit (LSB) error range is approximately $10^{-9}$ and STD is about $10^{-5}$.

Efficient dimension reduction using QR-decomposition and its application to text categorization (QR-분해를 이용한 효율적인 차원 감소 방법과 문서 분류에의 응용)

  • Lee Moon-Hwi;Park Cheong-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.358-360
    • /
    • 2006
  • LDA는 그룹간 간격을 최대화하고 그룹내 분산을 최소화하는 선형변환을 구함으로써 차원 감소된 공간에서 분별력(classification performance)을 높이는 선형 차원 감소 방법이다. 본 논문에서는 저샘플 문제(undersampled problem)에서 LDA를 적용할 수 있도록 QR-분해를 이용한 효율적인 차원 감소 방법을 제안한다. 특히 제안되는 방법은 문서 분류 문제에서처럼 한 문서가 몇 개의 카테고리에 중복적으로 속하는 경우 등 데이터의 독립성이 보장되지 않는 경우에도 효과적으로 적용될 수 있다는 장점이 있다.

  • PDF

A Systolic Array Structured Decision Feedback Equalizer based on Extended QR-RLS Algorithm (확장 QR-RLS 알고리즘을 이용한 시스토릭 어레이 구조의 결정 궤환 등화기)

  • Lee Won Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1518-1526
    • /
    • 2004
  • In this paper, an algorithm using wavelet transform for detecting a cut that is a radical scene transition point, and fade and dissolve that are gradual scene transition points is proposed. The conventional methods using wavelet transform for this purpose is using features in both spatial and frequency domain. But in the proposed algorithm, the color space of an input image is converted to YUV and then luminance component Y is transformed in frequency domain using 2-level lifting. Then, the histogram of only low frequency subband that may contain some spatial domain features is compared with the previous one. Edges obtained from other higher bands can be divided into global, semi-global and local regions and the histogram of each edge region is compared. The experimental results show the performance improvement of about 17% in recall and 18% in precision and also show a good performance in fade and dissolve detection.