Flow phantom with stenosis was manufactured using an auto-injector to obtain angiostenotic flow information and quality assurance (QA) for ultrasound diagnostic instrumentation. Effectiveness of manufactured flow phantom with stenosis was investigated with power Doppler that was known to have diagnostic efficiency for angiostenosis. The flow phantom with stenosis was manufactured to 70% stenosis with 8 mm and 2.4 mm silicon tube, and silicone tube was covered with gelatin that has acoustic characteristics similar to soft tissue. When the linear transducer was used for measurement, the estimated diameter of normal vessel was measured lower than that of normal value, and the estimated diameter of stenosed vessel was measured higher than that of normal value. The measured parameters were not affected except for the radical conditions such as gain of 60%, PRF of 3000 Hz, use of maximal filter or angle. In addition, when the convex transducer was used for measurement, measurement parameters were affected by gain, PRF, filter, and angle. Therefore it is expected that flow phantom with stenosis manufactured with an auto-injector will be utilized effectively for QA of angiostenotic diagnosis.
HDR brachytherapy administers a large dose of radiation in a short time compare with LDR, and its optimization for treatment is related to several complex factors, such as physical, radiation and optimization algorithms, so there is a need for these to be verified for accurate dose delivery. In our approach, a previous study concerning the phantom for dose verification has been modified, and a new pelvic phantom fabricated for the purpose of localization, including a structure enabling the use of a CT or MRI system. In addition, a comparison study was performed to verify an orthogonal method that is commonly used for brachytherapy localization by comparing target coordinates from a CT system. Since the developed phantom was designed to simulate the clinical setups of cervix cancer, it included an air-filled bladder and a rectum structure shaped sphere and cylinder An N-shaped localizer was used to obtain precision coordinates from both CT and films. Moreover, the IDL 5.5 software program for Windows was used to perform coordinates analysis based on an orthogonal algorithm. The film results showed differences within 1.0 mm of the selected target points compare with the CT coordinates. For these results, a Plato planning system (Nucletron, Netherlands) could be independently verified using this phantom and software. Furthermore, the new phantom and software will be efficient and powerful qualify assurance (QA) tools in the field of brachytherapy QA.
The Journal of Korean Society for Radiation Therapy
/
v.29
no.1
/
pp.7-18
/
2017
Purpose: A QA Set was established to verify the movement accuracy of image-guided 6DoF Couch and to evaluate its usefulness. Materials and Methods: Two sets of linear accelerators equipped with 6DoF Couch and CBCT were used. Using the established QA Set, each CBCT image was obtained over 15 times through the Penta-Guide Phantom installed with off-set shift values along six translational (Translation; TX, TY, TZ) and rotational (Rotation, Pitch; RX, Roll; RY, Yaw; RZ) directions. Using this method, we compared the reference image and the registration image, and we analyzed the error calculated by measuring the positional accuracy of the modified 6DoF Couch. Results: The Air Cavity corresponding to the Pixel of the reference image and the registration image were all contained between 30 and 66, and the revealing high registration accuracy. Error between the modified off-set value of 6DoF Couch and the measured value along translational directions were $0.25{\pm}0.18mm$ in the TX direction, $0.25{\pm}0.25mm$ in the TY direction, and $0.36{\pm}0.2mm$ in the TZ direction. Misalignments along the rotational axis were $0.18{\pm}0.08^{\circ}$ in the RX direction, $0.26{\pm}0.09^{\circ}$ in the RY direction, and $0.11{\pm}0.08^{\circ}$ in the RZ direction, it was corrected precisely for any value. Conclusion: Using the YCC QA Set, we were able to verify the error of 6DoF Couch along both the translational and rotational directions in a very simple method. This system would be useful in performing Daily IGRT QA of 6DoF Couch.
Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
Journal of Radiation Protection and Research
/
v.42
no.1
/
pp.9-15
/
2017
Background: The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Materials and Methods: Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. Results and Discussion: For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were $97.2%{\pm}2.3%$, and $99.4%{\pm}1.1%$, respectively while those for 15 MV were $98.5%{\pm}0.85%$ and $99.8%{\pm}0.2%$, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. Conclusion: The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.
Purpose :To design and test test CT simulator phantom for geometrical test. Materials and Methods : The PMMA phantom was designed as a cylinder which is 20 cm in diameter and 24 cm in length, along with a 25$\times25\times31cm^{3}$ rectangular parallelepiped. Radio-opaque wires of which diameter is 0.8 mm are attached on the other surface of the phantom as a spiral. The rectangular phantom was made of four 24$\times24\times0.5 cm^{3}$ square plates and each plate had a 24$\times24 cm^{2}$, 12$\times12cm^{2}$, 6$\times6 cm$^{2}$ square line. The squares were placed to face the cylinder at angles 0 $^{\circ}$ , 15 $^{\circ}$ , 30 $^{\circ}$ ,respectively. The rectangular phantom made it possible to measure the field size, couch angle, the collimator angle, the isocenter shift and the SSD, the measurements of the gantry angle from the cylindrical part. A virtual simulation software, AcOSim, offered various conditions to perform virtual simulations and these results were used to perform the geometrical Quality assurance of CT simulator. Results : A 0.3$\~$0.5 mm difference was found on the 24 cm field size which was created with the DRR measurements obtained by scanning of the rectangular phantom. The isocenter shift, the collimator rotation, the couch rotation, and the gantry rotation test showed 0.5$\~$1 mm, 0.5$\~$l$^{\circ}$ 0.5$\~$ 1$^{\circ}$ , and 0.5-1 $^{\circ}$ differences, respectively. We could not find any significant differences between the results from the two scanning methods. Conclusion :The geometrical test phantom developed in the study showed less than 1 mm (or 1 $^{\circ}$ ) differences. The phantom could be used as a routine geometrical QC/QA tools, since the differences are within clinically acceptable ranges.
Rahman, Mohammad Mahfujur;Kim, Chan Hyeong;Kim, Seonghoon
Journal of Radiation Protection and Research
/
v.44
no.1
/
pp.32-42
/
2019
Background: There have been much efforts to develop the proper and realistic machine Quality Assurance (QA) reflecting on real Volumetric Modulated Arc Therapy (VMAT) plan. In this work we propose and test a special VMAT plan of plan-class specific (pcsr) QA, as a machine QA so that it might be a good solution to supplement weak point of present machine QA to make it more realistic for VMAT treatment. Materials and Methods: We divided human body into 5 treatment sites: brain, head and neck, chest, abdomen, and pelvis. One plan for each treatment site was selected from real VMAT cases and contours were mapped into the computational human phantom where the same plan as real VMAT plan was created and called plan-class specific reference (pcsr) QA plan. We delivered this pcsr QA plan on a daily basis over the full research period and tracked how much MLC movement and dosimetric error occurred in regular delivery. Several real patients under treatments were also tracked to test the usefulness of pcsr QA through comparisons between them. We used dynalog file viewer (DFV) and Dynalog file to analyze position and speed of individual MLC leaf. The gamma pass rate from portal dosimetry for different gamma criteria was analyzed to evaluate analyze dosimetric accuracy. Results and Discussion: The maxRMS of MLC position error for all plans were all within the tolerance limit of < 0.35 cm and the positional variation of maxPEs for both pcsr and real plans were observed very stable over the research session. Daily variations of maxRMS of MLC speed error and gamma pass rate for real VMAT plans were observed very comparable to those in their pcsr plans in good acceptable fluctuation. Conclusion: We believe that the newly proposed pcsr QA would be useful and helpful to predict the mid-term quality of real VMAT treatment delivery.
Aim of this study is to investigate the feasibility of 2D ion chamber array as a substitute of the water phantom system in a periodic Linac QA. For the feasibility study, a commercial ion chamber matrix was used as a substitute of the water phantom in the measurement for a routine QA beam properties. The device used in this study was the I'm RT MatriXX (Wellhofer Dosimetrie, Germany). The MatriXX consists of a 1,020 vented ion chamber array, arranged in $24{\times}24\;cm^2$ matrix. Each ion chamber has a volume of $0.08\;cm^3$, spacing of 0.762 cm. We investigated dosimetric parameters such as dose symmetry, energy ($TPR_{20,10}$), and absolute dose for comparing with the water phantom data with a Farmer-type ionization chamber (FC65G, Wellhofer Dosimetrie, Germany). For the MatriXX measurements, we used the white polystyrene phantom (${\rho}:\;1.18\;g/cm^3$) and also considered the intrinsic layer (${\rho}:\;1.06\;g/cm^3$, t: 0.36 cm) of MatriXX to be equivalent to water depth. In the preliminary study of geometrical QA using MatriXX, the rotation axis of collimator and half beam junction test were included and compared with film measurements. Regarding the dosimetrical QA, the MatriXX has shown good agreements within ${\pm}1%$ compared to the water phantom measurements. In the geometrical test, the data from MatriXX were comparable with those from the films. In conclusion, the MatriXX is a good substitute for water phantom system and film measurements. In addition, the results indicate that the MatriXX as a cost-effective novel QA tool to reduce time and personnel power.
In diagnostic ultrasound, the quality of image affect to diagnose. To maintain suboptimal imaging uniformly, Quality Assurance of Ultrasound equipment should take periodically. This is article about examination the quality of image in diagnostic ultrasound to understand conditions of probes in hospitals. There is comparative study of convex and linear probes on ultrasound using tissue-mimicking phantom included simulated cysts, echogenic structures. The ultrasonic attenuation coefficient versus frequency of 0.5 dB is representative of normal liver and 0.7 dB is representative of fatty liver condition in ultrasound phantom. There are results of convex probe, 0.5 dB, vertical group, cystic masses, high contrast masses are mostly shown but 0.7 dB, mid level in vertical group, cystic masses and high contrast masses are nearly visible. In linear probe, 0.5 dB, mid level in vertical group, two or four of them are shown in cystic masses and high contrast masses but there are not visible in 11 of cases. 0.7 dB, there are mostly appear under 6 in vertical group, two or four of them show in cystic masses and high contrast masses and there are not shown in 40 of cases, besides. Linear probes in fatty liver condition of ultrasound instrument are not good in the quality of image practically. So there needs to be replace and fix of probes. Actually management of ultrasound probes is inadequate in hospitals. So if there are program of evaluation to check probes periodically in hospitals from establishment of the ultrasound equipment, there will get better image and have a suitable condition of instruments further more.
In Republic of Korea, there are many Quality Assurance protocol for general radiation treatment machine such as linac. However, Quality Assurance protocol for radiosurgery treatment system is not ready perfectly. One of the radiation treatment machine for radiosurgery, novalis system needs to suitable Quality Assurance protocol for using it right way during radiation treatment and maintaining suitable accuracy for daily, weekly, monthly and annually periods. Therefore, in this article, we develop Quality Assurance protocol for novalis system. We collected and analysed domestic and foreign novalis Quality Assurance protocol. After that, we selected essential QA items and each tolerance range for developing proper QA protocol, and we made anatomical phantom for execution of selected QA items and evaluation of overall state of QA, and then, we use this measured value as a reference. Quality Assurance items are consisted of Mechanical accuracy QA part and Radiation delivery QA part. Mechanical accuracy QA part is comprised of radiation generation machine part, assistive devices part and multi-leaf collimator part. Radiation delivery QA part is divided into radiation isocenter accuracy and dosimetric evaluation. After that, developed novalis QA tables are made by using these QA items. These novalis QA tables would be used to good standard in order to maintain apt accuracy for radiosurgery in daily, weekly, monthly and annually periods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.