• Title/Summary/Keyword: QA 시스템

Search Result 155, Processing Time 0.019 seconds

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.

Transmission Dose Estimation Algorithm for in vivo Dosimertry (투과선량을 이용한 생체내 (in vivo) 선량측정을 위한 알고리즘)

  • Yun, Hyong-Geun;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Woo, Hong-Gyun;Shin, Kyo-Chul;Kim, Si-Yong;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.147-154
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Materials and Methods : Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 co Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed lot estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. Results : The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ${\pm}0.5%$. For elongated radiation field, the errors were limited to ${\pm}1.0%$. Conclusion : The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

A Study on Mechanical Errors in Cone Beam Computed Tomography(CBCT) System (콘빔 전산화단층촬영(CBCT) 시스템에서 기계적 오류에 관한 연구)

  • Lee, Yi-Seong;Yoo, Eun-Jeong;Kim, Seung-Keun;Choi, Kyoung-Sik;Lee, Jeong-Woo;Suh, Tae-Suk;Kim, Joeng-Koo
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.123-129
    • /
    • 2013
  • This study investigated the rate of setup variance by the rotating unbalance of gantry in image-guided radiation therapy. The equipments used linear accelerator(Elekta Synergy TM, UK) and a three-dimensional volume imaging mode(3D Volume View) in cone beam computed tomography(CBCT) system. 2D images obtained by rotating $360^{\circ}$and $180^{\circ}$ were reconstructed to 3D image. Catpan503 phantom and homogeneous phantom were used to measure the setup errors. Ball-bearing phantom was used to check the rotation axis of the CBCT. The volume image from CBCT using Catphan503 phantom and homogeneous phantom were analyzed and compared to images from conventional CT in the six dimensional view(X, Y, Z, Roll, Pitch, and Yaw). The variance ratio of setup error were difference in X 0.6 mm, Y 0.5 mm Z 0.5 mm when the gantry rotated $360^{\circ}$ in orthogonal coordinate. whereas rotated $180^{\circ}$, the error measured 0.9 mm, 0.2 mm, 0.3 mm in X, Y, Z respectively. In the rotating coordinates, the more increased the rotating unbalance, the more raised average ratio of setup errors. The resolution of CBCT images showed 2 level of difference in the table recommended. CBCT had a good agreement compared to each recommended values which is the mechanical safety, geometry accuracy and image quality. The rotating unbalance of gentry vary hardly in orthogonal coordinate. However, in rotating coordinate of gantry exceeded the ${\pm}1^{\circ}$ of recommended value. Therefore, when we do sophisticated radiation therapy six dimensional correction is needed.

A Study to Evaluate the Efficacy of CBCT and EXACTRAC on Spine Stereotactic Body Radiation Therapy (CBCT와 EXACTRAC을 이용한 Spine SBRT의 유용성 평가)

  • Choi, Woo Keun;Park, Su Yeon;Park, Do Keun;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.167-173
    • /
    • 2013
  • Purpose: This study is to evaluate the efficacy of the CBCT and EXACTRAC the image on the spine stereotactic body radiation treatment. Materials and Methods: The study compared the accuracy of the dose distribution for changes in the real QA phantom for The shape of the body of the phantom was performed. Novalis treatment artificially set up at the center and to the right, on the Plan 1 mm, 2 mm, 3 mm in front 1 mm, 2 mm, 3 mm and upwards 1 mm, 2 mm, 3 mm and $0.5^{\circ}$ by moving side to side Exactrac error correction and error values of CBCT and plan changes on the dose distribution were recorded and analyzed. Results: Cubic Phantom of the experimental error, the error correction Exactrac X-ray 6D Translation in the direction of the 0.18 mm, Rotation direction was $0.07^{\circ}$. Translation in the direction of the 3D CBCT 0.15 mm Rotation direction was $0.04^{\circ}$. DVH dose distribution using the results of the AP evaluate the change in the direction of change was greatest when moving. Conclusion: ExacTrac image-guided radiation therapy with a common easy and fast to get pictures from all angles, from the advantage of CBCT showed a potential alternative. But every accurate information compared with CT treatment planning and treatment of patients with more accurate than the CBCT ExacTrac the location provided. Changes in the dose distribution in the experiment results show that the treatment of spinal SBRT set up some image correction due to errors at the target and enter the spinal cord dose showed that significant differences appear.

  • PDF

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF