• Title/Summary/Keyword: Q-subsemimodule

Search Result 2, Processing Time 0.017 seconds

On Partitioning and Subtractive Subsemimodules of Semimodules over Semirings

  • Chaudhari, Jaiprakash Ninu;Bond, Dipak Ravindra
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.329-336
    • /
    • 2010
  • In this paper, we introduce a partitioning subsemimodule of a semimodule over a semiring which is useful to develop the quotient structure of semimodule. Indeed we prove : 1) The quotient semimodule M=N(Q) is essentially independent of choice of Q. 2) If f : M ${\rightarrow}$ M' is a maximal R-semimodule homomorphism, then $M/kerf_{(Q)}\;\cong\;M'$. 3) Every partitioning subsemimodule is subtractive. 4) Let N be a Q-subsemimodule of an R-semimodule M. Then A is a subtractive subsemimodule of M with $N{\subseteq}A$ if and only if $A/N_{(Q{\cap}A)}\;=\;\{q+N:q{\in}Q{\cap}A\}$ is a subtractive subsemimodule of $M/N_{(Q)}$.