• Title/Summary/Keyword: Q-band

Search Result 390, Processing Time 0.022 seconds

Fabrication and Characterization of Wideband HTS Antennas for Satellite to Satellite Communication (위성 대 위성 통신용 광대역 HTS 안테나 제작 및 특성 해석)

  • 정동철;최명호;황종선;강형곤;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.523-526
    • /
    • 2002
  • We designed wideband HTS antennas which consists of two triangle-radiation patches using a YBa$_2$Cu$_3$O$\sub$7-x/ (YBCO) superconducting thin film. The major limitation of high-Tc superconducting (HTS) microstrip antennas is the narrow bandwidth due to the high Q and thin substrate. Defining bandwidth as the frequency range over which standing wave ratio (SWR) 2:1 or less, HTS antenna bandwidths are typically 0.85% to 1.1%. Thus considerable effort has been focused on developing antennas for broadband operation. To calculate input impedance and design of the broadband HTS antennas a moment method technique was used. The HTS antenna fabricated in this work was designed for K-band, which is useful band for satellite-to-satellite communications. The bandwidth obtained was a significant 6.7% and the other measured performance of our HTS antenna, including the bandwidth, radiation Pattern, efficiency, standing wave ratio (SWR) and return losses was reported.

  • PDF

Design of 130nm CMOS Voltage Controlled Oscillator Using Optimized Spiral Inductor for L1 band GPS Receiver (최적화된 나선형 인덕터를 이용한 L1 band GPS 수신기용 130nm CMOS VCO 설계)

  • Ahn, Deok Ki;Hwang, In Chul
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.101-105
    • /
    • 2009
  • A 1.571GHz LC VCO with optimized spiral inductor for GPS receiver is designed in 130nm CMOS process. The phase noise of the VCO has been reduced the use of high Q inductor and on chip filter. It has phase noise of -91dBc/Hz, -111dBc/Hz, and -131dBc/Hz at 10kHz, 100kHz, and 1MHz offset frequencies from the carrier, respectively. This VCO consumes 2mA from a 0.6V supply.

  • PDF

Design and fabrication of multilayer LTCC BPF using DGS structure (DGS 구조를 이용한 적층 LTCC 대역통과 필터의 설계 및 제작)

  • Cho, Y.K.;Kim, H.S.;Song, H.S.;Park, K.H.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.333-337
    • /
    • 2003
  • In this paper, 5.2 GHz WLAN BPF(Band Pass Filter) using LTCC(Low temperature co-firing ceramic) Multilayer technology was simulated and manufactured. A DGS(Defected Ground structure) resonator with spiral ground pattern is used to shorten resonator size and improve circuit Q factor. And the equivalent circuit of BPF was suggested. The measured result shows good agreement with simulated data. Experimental results show the center frequency of 5.25GHz, the insertion loss of 0.14dB, and the 3-dB bandwidth of 350MHz (6%). The center frequency of BPF is 5.25GHz which is available for wireless LAN.

  • PDF

Design of a Frequency Synthesizer for UHF RFID Reader Application (UHF 대역 RFID 리더 응용을 위한 주파수합성기 설계)

  • Kim, Kyung-Hwan;Oh, Kun-Chang;Park, Jong-Tae;Yu, Chong-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.889-895
    • /
    • 2008
  • In this paper a Fractional-N frequency synthesizer is designed for UHF RFID readers. It satisfies the ISO/IEC frequency band($860{\sim}960MHz$) and is also applicable to mobile RFID readers. A VCO is designed to operate at 1.8GHz band such that the LO pulling effect is minimized. The 900MHz differential I/Q LO signals are obtained by dividing the differential signal from an integrated 1.8GHz VCO. It is designed using a $0.18{\mu}m$ RF CMOS process. The measured results show that the designed circuit has a phase noise of -103dBc/Hz at 100KHz offset and consumes 9mA from a 1.8V supply. The channel switching time of $10{\mu}s$ over 5MHz transition have been achieved, and the chip size including PADs is $1.8{\times}0.99mm^2$.

An RF Amplitude Equalizer ; Improved Passband Flatness of a Bandpass Filter

  • Hwang, Hee-Yong;Jung, Jung-Seong;Yun, Sang-won
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.83-87
    • /
    • 2001
  • Many communication systems require bandpass filters with sharp skirt frequency characteristics in order to avoid the interferencce, which results in more order in the filter design. However, because of the limited Q values bandpass filters made of small sized ceramic resonators suffer from relatively large ripples at the band edges as the order of the filter increases. In order to compensate the large ripples while maintaining the sharp skirt frequency we propose a new RF amplitude equalizer. The equalizer made of two pole bandpass filter and an amplifier whose amplitude characteristics are the reverse of those of the bandapss filter. At the cellular band 9-pole bandpass filter with 10 MHz bandwidth exhibits 3 dB ripple when 8mm*8mm ceramic coaxial resonators are used. We added the RF equalizer to this filter and the flatness is improved as less than 1 dB.

  • PDF

Millimeter-wave Fast-sweep FM Reflectometry Applied to Plasma Density Profile Measurements

  • Kang, Wook-Kim
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2001
  • A fast-sweep broadband FM reflectometer system has been successfully developed and operacted at the DIII-D tokamak, producing reliable density Profiles with excellent spatial (1 $\leq$ cm) and temporal resolution (~100 $\mu$ s). The system uses a solid-state microwave oscillator and an active quadrupler, covering full Q-band frequencies (33~50 GHz) and providing relatively high output power (20~60 mW). The system hardware allows fu11band frequency sweep in 10 $\mu$ s, but due to digitization rate limit on DIII-D, sweep time was limited to 75~100 $\mu$ s. Fast frequency sweep has helped to reduce density fluctuation effects on the reflectometer phase measurements, thus improving reliability for individual sweeps. The fast-sweep system with high spatial and temporal resolution has allowed to measure fast-changing edge density profiles during plasma ELMS and L-H transitions, thus enabling fast-time sca1e physics studies.

  • PDF

Characterization of As-Developed LTCC Material Through The Fabrication of 2-Pole Band Pass Filter (적층형 2-Pole 대역통과 필터 제작을 통한 개발된 LTCC 조성의 특성 평가)

  • 이경호;최병훈;방재철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.134-137
    • /
    • 2002
  • A new LTCC material in the $PbWO_4-TiO_2-B_2O_3-CuO$ system was developed. The developed material can be sintered at $850^{\circ}C$ and its dielectric properties are $\varepsilon_r=20-25, Q\timesf_o=30000~50000GHz$ , and $\tau_f=0.2~30ppm/^{\circ}C$, depending on the components moi ratio. Due to its low sintering temperature and microwave dielectric properties, the developed material can be used as a LTCC substrate for fabrication of multilayered microwave communication module set. In present study, using this material, tape casting condition was established. With this processing condition, a T-resonator was fabricated and its electrical properties were examined. Also, a 2-Pole band pass filter was fabricated and its frequency characteristics were compared with simulation results.

  • PDF

Compact CMOS C-Band Bandpass Filter Using lnterdigital Capacitor

  • Kang, In-Ho;Wang, Xu-Guang
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.759-762
    • /
    • 2007
  • A novel miniaturized CMOS C-Band bandpass filter based on diagonally end-shorted coupled lines and interdigital capacitors is proposed. The utilized coupled lines structure reduced the configuration in size, as small as a few degrees. Moreover, the characteristic of interdigital capacitor, relatively high Q and good capacitance tolerance, accounts for the satisfied performance of this new filter. A two-stage bandpass filter was designed and fabricated with chip surface area only $1.02{\times}1.4\;mm^2$.

470-MHz-698-MHz IEEE 802.15.4m Compliant RF CMOS Transceiver

  • Seo, Youngho;Lee, Seungsik;Kim, Changwan
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.167-179
    • /
    • 2018
  • This paper proposes an IEEE 802.15.4m compliant TV white-space orthogonal frequency-division multiplexing (TVWS)-(OFDM) radio frequency (RF) transceiver that can be adopted in advanced metering infrastructures, universal remote controllers, smart factories, consumer electronics, and other areas. The proposed TVWS-OFDM RF transceiver consists of a receiver, a transmitter, a 25% duty-cycle local oscillator generator, and a delta-sigma fractional-N phase-locked loop. In the TV band from 470 MHz to 698 MHz, the highly linear RF transmitter protects the occupied TV signals, and the high-Q filtering RF receiver is tolerable to in-band interferers as strong as -20 dBm at a 3-MHz offset. The proposed TVWS-OFDM RF transceiver is fabricated using a $0.13-{\mu}m$ CMOS process, and consumes 47 mA in the Tx mode and 35 mA in the Rx mode. The fabricated chip shows a Tx average power of 0 dBm with an error-vector-magnitude of < 3%, and a sensitivity level of -103 dBm with a packet-error-rate of < 3%. Using the implemented TVWS-OFDM modules, a public demonstration of electricity metering was successfully carried out.

Modal identifiability of a cable-stayed bridge using proper orthogonal decomposition

  • Li, M.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.413-429
    • /
    • 2016
  • The recent research on proper orthogonal decomposition (POD) has revealed the linkage between proper orthogonal modes and linear normal modes. This paper presents an investigation into the modal identifiability of an instrumented cable-stayed bridge using an adapted POD technique with a band-pass filtering scheme. The band-pass POD method is applied to the datasets available for this benchmark study, aiming to identify the vibration modes of the bridge and find out the so-called deficient modes which are unidentifiable under normal excitation conditions. It turns out that the second mode of the bridge cannot be stably identified under weak wind conditions and is therefore regarded as a deficient mode. To judge if the deficient mode is due to its low contribution to the structural response under weak wind conditions, modal coordinates are derived for different modes by the band-pass POD technique and an energy participation factor is defined to evaluate the energy participation of each vibration mode under different wind excitation conditions. From the non-blind datasets, it is found that the vibration modes can be reliably identified only when the energy participation factor exceeds a certain threshold value. With the identified threshold value, modal identifiability in use of the blind datasets from the same structure is examined.