• 제목/요약/키워드: Q learning

검색결과 431건 처리시간 0.02초

Q-learning을 이용한 이동 로봇의 실시간 경로 계획 (Real-Time Path Planning for Mobile Robots Using Q-Learning)

  • 김호원;이원창
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.991-997
    • /
    • 2020
  • 강화학습은 주로 순차적인 의사 결정 문제에 적용되어 왔다. 특히 최근에는 신경망과 결합한 형태로 기존에는 해결하지 못한 분야에서도 성공적인 결과를 내고 있다. 하지만 신경망을 이용하는 강화학습은 현장에서 즉각적으로 사용하기엔 너무 복잡하다는 단점이 있다. 본 논문에서는 학습이 쉬운 강화학습 알고리즘 중 하나인 Q-learning을 이용하여 이동 로봇의 경로를 생성하는 알고리즘을 구현하였다. Q-table을 미리 만드는 방식의 Q-learning은 명확한 한계를 가지기 때문에 실시간으로 Q-table을 업데이트하는 실시간 Q-learning을 사용하였다. 탐험 전략을 조정하여 실시간 Q-learning에 필요한 학습 속도를 얻을 수 있었다. 마지막으로 실시간 Q-learning과 DQN의 성능을 비교하였다.

강화학습의 Q-learning을 위한 함수근사 방법 (A Function Approximation Method for Q-learning of Reinforcement Learning)

  • 이영아;정태충
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1431-1438
    • /
    • 2004
  • 강화학습(reinforcement learning)은 온라인으로 환경(environment)과 상호작용 하는 과정을 통하여 목표를 이루기 위한 전략을 학습한다. 강화학습의 기본적인 알고리즘인 Q-learning의 학습 속도를 가속하기 위해서, 거대한 상태공간 문제(curse of dimensionality)를 해결할 수 있고 강화학습의 특성에 적합한 함수 근사 방법이 필요하다. 본 논문에서는 이러한 문제점들을 개선하기 위해서, 온라인 퍼지 클러스터링(online fuzzy clustering)을 기반으로 한 Fuzzy Q-Map을 제안한다. Fuzzy Q-Map은 온라인 학습이 가능하고 환경의 불확실성을 표현할 수 있는 강화학습에 적합한 함수근사방법이다. Fuzzy Q-Map을 마운틴 카 문제에 적용하여 보았고, 학습 초기에 학습 속도가 가속됨을 보였다.

Q-value Initialization을 이용한 Reinforcement Learning Speedup Method (Reinforcement learning Speedup method using Q-value Initialization)

  • 최정환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.13-16
    • /
    • 2001
  • In reinforcement teaming, Q-learning converges quite slowly to a good policy. Its because searching for the goal state takes very long time in a large stochastic domain. So I propose the speedup method using the Q-value initialization for model-free reinforcement learning. In the speedup method, it learns a naive model of a domain and makes boundaries around the goal state. By using these boundaries, it assigns the initial Q-values to the state-action pairs and does Q-learning with the initial Q-values. The initial Q-values guide the agent to the goal state in the early states of learning, so that Q-teaming updates Q-values efficiently. Therefore it saves exploration time to search for the goal state and has better performance than Q-learning. 1 present Speedup Q-learning algorithm to implement the speedup method. This algorithm is evaluated. in a grid-world domain and compared to Q-teaming.

  • PDF

효율적인 경로 선택을 위한 Q-Learning 정책 및 보상 설계 (Q-Learning Policy and Reward Design for Efficient Path Selection)

  • 용성중;박효경;유연휘;문일영
    • 한국항행학회논문지
    • /
    • 제26권2호
    • /
    • pp.72-77
    • /
    • 2022
  • 강화학습의 기법 중 Q-Learning은 주어진 상태에서 행동을 수행하면서 미래의 효율적인 기댓값을 예측하는 Q 함수를 학습하면서 최적의 정책을 학습하는 것이다. Q-Learning은 강화학습의 기본적인 알고리즘으로 많이 활용하고 있다. 본 논문에서는 Q-Learning을 바탕으로 정책과 보상을 설계하여 효율적인 경로를 선택하고 학습하는 효용성에 대하여 연구하였다. 또한 Frozen Lake 게임의 8x8 그리드 환경에 동일한 학습 횟수를 적용하여 기존 알고리즘 및 처벌 보상 정책과 제시한 처벌강화 정책의 결과를 비교하였다. 해당 비교를 통해 본 논문에서 제시한 Q-Learning의 처벌강화 정책이 통상적인 알고리즘의 적용보다 학습 속도를 상당히 높일 수 있는 것으로 분석되었다.

매크로 행동을 이용한 내시 Q-학습의 성능 향상 기법 (A Performance Improvement Technique for Nash Q-learning using Macro-Actions)

  • 성연식;조경은;엄기현
    • 한국멀티미디어학회논문지
    • /
    • 제11권3호
    • /
    • pp.353-363
    • /
    • 2008
  • 단일 에이전트 환경에서는 Q-학습의 학습 시간을 줄이기 위해서 학습결과를 전파시키거나 일렬의 행동을 패턴으로 만들어 학습한다. 다중 에이전트 환경에서는 동적인 환경과 다수의 에이전트 상태를 고려해야하기 때문에 학습에 필요한 시간이 단일 에이전트 환경보다 길어지게 된다. 이 논문에서는 단일 에이전트 환경에서 시간 단축을 위해서 유한개의 행동으로 정책을 만들어 학습하는 매크로 행동을 다중 에이전트 환경에 적합한 내시 Q-학습에 적용함으로써 다중 에이전트 환경에서 Q-학습 시간을 줄이고 성능을 높이는 방법을 제안한다. 실험에서는 다중 에이전트 환경에서 매크로 행동을 이용한 에이전트와 기본 행동만 이용한 에이전트의 내시 Q-학습 성능을 비교했다. 이 실험에서 네 개의 매크로 행동을 이용한 에이전트가 목표를 수행할 성공률이 기본 행동만 이용한 에이전트 보다 9.46% 높은 결과를 얻을 수 있었다. 매크로 행동은 기본 행동만을 이용해서 적합한 이동 행동을 찾아도 매크로 행동을 이용한 더 낳은 방법을 찾기 때문에 더 많은 Q-값의 변화가 발생되었고 전체 Q-값 합이 2.6배 높은 수치를 보였다. 마지막으로 매크로 행동을 이용한 에이전트는 약 절반의 행동 선택으로도 시작위치에서 목표위치까지 이동함을 보였다. 결국 에이전트는 다중 에이전트 환경에서 매크로 행동을 사용함으로써 성능을 향상시키고 목표위치까지 이동하는 거리를 단축해서 학습 속도를 향상시킨다.

  • PDF

강화학습 Q-learning 기반 복수 행위 학습 램프 로봇 (Multi Behavior Learning of Lamp Robot based on Q-learning)

  • 권기현;이형봉
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.35-41
    • /
    • 2018
  • 강화학습기반 Q-learning 알고리즘은 이산적인 상태와 액션의 조합을 사용하여, 한 번에 하나의 행위에 대한 목표를 학습하는데 유용하다. 여러 액션을 학습하기 위해서는 행위 기반 아키텍처를 적용하고 적절한 행위 조절 방법을 사용하면 로봇으로 하여금 빠르고 신뢰성 있는 액션을 가능하게 할 수 있다. Q-learning은 인기 있는 강화학습 방법으로 단순하고, 수렴성이 있고 사전 훈련 환경에 영향을 덜 받는 특성(off-policy)으로 인해 로봇 학습에 많이 사용되고 있다. 본 논문에서는 Q-learning 알고리즘을 램프 로봇에 적용하여 복수 행위(사람인식, 책상의 물체 인식)를 학습시키는데 사용하였다. Q-learning의 학습속도(learning rate)는 복수 행위 학습 단계의 로봇 성능에 영향을 줄 수 있으므로 학습속도 변경을 통해 최적의 복수 행위 학습 모델을 제시한다.

에이전트 학습 속도 향상을 위한 Q-Learning 정책 설계 (Q-Learning Policy Design to Speed Up Agent Training)

  • 용성중;박효경;유연휘;문일영
    • 실천공학교육논문지
    • /
    • 제14권1호
    • /
    • pp.219-224
    • /
    • 2022
  • 강화학습의 기본적인 알고리즘으로 많이 사용되고 있는 Q-Learning은 현재 상태에서 취할 수 있는 행동의 보상 중 가장 큰 값을 선택하는 Greedy action을 통해 보상을 최대화하는 방향으로 에이전트를 학습시키는 기법이다. 본 논문에서는 Frozen Lake 8*8 그리드 환경에서 Q-Learning을 사용하여 에이전트의 학습 속도를 높일 수 있는 정책에 관하여 연구하였다. 또한, Q-learning 의 기존 알고리즘과 에이전트의 행동에 '방향성'이라는 속성을 부여한 알고리즘의 학습 결과 비교를 진행하였다. 결과적으로, 본 논문에서 제안한 Q-Learning 정책이 통상적인 알고리즘보다 정확도와 학습 속도 모두 크게 높일 수 있는 것을 분석되었다.

Q-learning 알고리즘이 성능 향상을 위한 CEE(CrossEntropyError)적용 (Applying CEE (CrossEntropyError) to improve performance of Q-Learning algorithm)

  • 강현구;서동성;이병석;강민수
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.

Solving Continuous Action/State Problem in Q-Learning Using Extended Rule Based Fuzzy Inference System

  • Kim, Min-Soeng;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.170-175
    • /
    • 2001
  • Q-learning is a kind of reinforcement learning where the agent solves the given task based on rewards received from the environment. Most research done in the field of Q-learning has focused on discrete domains, although the environment with which the agent must interact is generally continuous. Thus we need to devise some methods that enable Q-learning to be applicable to the continuous problem domain. In this paper, an extended fuzzy rule is proposed so that it can incorporate Q-learning. The interpolation technique, which is widely used in memory-based learning, is adopted to represent the appropriate Q value for current state and action pair in each extended fuzzy rule. The resulting structure based on the fuzzy inference system has the capability of solving the continuous state about the environment. The effectiveness of the proposed structure is shown through simulation on the cart-pole system.

  • PDF

강화학습의 학습 가속을 위한 함수 근사 방법 (Function Approximation for accelerating learning speed in Reinforcement Learning)

  • 이영아;정태충
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.635-642
    • /
    • 2003
  • 강화학습은 제어, 스케쥴링 등 많은 응용분야에서 성공적인 학습 결과를 얻었다. 기본적인 강화학습 알고리즘인 Q-Learning, TD(λ), SARSA 등의 학습 속도의 개선과 기억장소 등의 문제를 해결하기 위해서 여러 함수 근사방법(function approximation methods)이 연구되었다. 대부분의 함수 근사 방법들은 가정을 통하여 강화학습의 일부 특성을 제거하고 사전지식과 사전처리가 필요하다. 예로 Fuzzy Q-Learning은 퍼지 변수를 정의하기 위한 사전 처리가 필요하고, 국소 최소 자승법은 훈련 예제집합을 이용한다. 본 논문에서는 온-라인 퍼지 클러스터링을 이용한 함수 근사 방법인 Fuzzy Q-Map을 제안하다. Fuzzy Q-Map은 사전 지식이 최소한으로 주어진 환경에서, 온라인으로 주어지는 상태를 거리에 따른 소속도(membership degree)를 이용하여 분류하고 행동을 예측한다. Fuzzy Q-Map과 다른 함수 근사 방법인 CMAC와 LWR을 마운틴 카 문제에 적용하여 실험 한 결과 Fuzzy Q-Map은 훈련예제를 사용하지 않는 CMAC보다는 빠르게 최고 예측율에 도달하였고, 훈련 예제를 사용한 LWR보다는 낮은 예측율을 보였다.