강화학습은 주로 순차적인 의사 결정 문제에 적용되어 왔다. 특히 최근에는 신경망과 결합한 형태로 기존에는 해결하지 못한 분야에서도 성공적인 결과를 내고 있다. 하지만 신경망을 이용하는 강화학습은 현장에서 즉각적으로 사용하기엔 너무 복잡하다는 단점이 있다. 본 논문에서는 학습이 쉬운 강화학습 알고리즘 중 하나인 Q-learning을 이용하여 이동 로봇의 경로를 생성하는 알고리즘을 구현하였다. Q-table을 미리 만드는 방식의 Q-learning은 명확한 한계를 가지기 때문에 실시간으로 Q-table을 업데이트하는 실시간 Q-learning을 사용하였다. 탐험 전략을 조정하여 실시간 Q-learning에 필요한 학습 속도를 얻을 수 있었다. 마지막으로 실시간 Q-learning과 DQN의 성능을 비교하였다.
강화학습(reinforcement learning)은 온라인으로 환경(environment)과 상호작용 하는 과정을 통하여 목표를 이루기 위한 전략을 학습한다. 강화학습의 기본적인 알고리즘인 Q-learning의 학습 속도를 가속하기 위해서, 거대한 상태공간 문제(curse of dimensionality)를 해결할 수 있고 강화학습의 특성에 적합한 함수 근사 방법이 필요하다. 본 논문에서는 이러한 문제점들을 개선하기 위해서, 온라인 퍼지 클러스터링(online fuzzy clustering)을 기반으로 한 Fuzzy Q-Map을 제안한다. Fuzzy Q-Map은 온라인 학습이 가능하고 환경의 불확실성을 표현할 수 있는 강화학습에 적합한 함수근사방법이다. Fuzzy Q-Map을 마운틴 카 문제에 적용하여 보았고, 학습 초기에 학습 속도가 가속됨을 보였다.
In reinforcement teaming, Q-learning converges quite slowly to a good policy. Its because searching for the goal state takes very long time in a large stochastic domain. So I propose the speedup method using the Q-value initialization for model-free reinforcement learning. In the speedup method, it learns a naive model of a domain and makes boundaries around the goal state. By using these boundaries, it assigns the initial Q-values to the state-action pairs and does Q-learning with the initial Q-values. The initial Q-values guide the agent to the goal state in the early states of learning, so that Q-teaming updates Q-values efficiently. Therefore it saves exploration time to search for the goal state and has better performance than Q-learning. 1 present Speedup Q-learning algorithm to implement the speedup method. This algorithm is evaluated. in a grid-world domain and compared to Q-teaming.
강화학습의 기법 중 Q-Learning은 주어진 상태에서 행동을 수행하면서 미래의 효율적인 기댓값을 예측하는 Q 함수를 학습하면서 최적의 정책을 학습하는 것이다. Q-Learning은 강화학습의 기본적인 알고리즘으로 많이 활용하고 있다. 본 논문에서는 Q-Learning을 바탕으로 정책과 보상을 설계하여 효율적인 경로를 선택하고 학습하는 효용성에 대하여 연구하였다. 또한 Frozen Lake 게임의 8x8 그리드 환경에 동일한 학습 횟수를 적용하여 기존 알고리즘 및 처벌 보상 정책과 제시한 처벌강화 정책의 결과를 비교하였다. 해당 비교를 통해 본 논문에서 제시한 Q-Learning의 처벌강화 정책이 통상적인 알고리즘의 적용보다 학습 속도를 상당히 높일 수 있는 것으로 분석되었다.
단일 에이전트 환경에서는 Q-학습의 학습 시간을 줄이기 위해서 학습결과를 전파시키거나 일렬의 행동을 패턴으로 만들어 학습한다. 다중 에이전트 환경에서는 동적인 환경과 다수의 에이전트 상태를 고려해야하기 때문에 학습에 필요한 시간이 단일 에이전트 환경보다 길어지게 된다. 이 논문에서는 단일 에이전트 환경에서 시간 단축을 위해서 유한개의 행동으로 정책을 만들어 학습하는 매크로 행동을 다중 에이전트 환경에 적합한 내시 Q-학습에 적용함으로써 다중 에이전트 환경에서 Q-학습 시간을 줄이고 성능을 높이는 방법을 제안한다. 실험에서는 다중 에이전트 환경에서 매크로 행동을 이용한 에이전트와 기본 행동만 이용한 에이전트의 내시 Q-학습 성능을 비교했다. 이 실험에서 네 개의 매크로 행동을 이용한 에이전트가 목표를 수행할 성공률이 기본 행동만 이용한 에이전트 보다 9.46% 높은 결과를 얻을 수 있었다. 매크로 행동은 기본 행동만을 이용해서 적합한 이동 행동을 찾아도 매크로 행동을 이용한 더 낳은 방법을 찾기 때문에 더 많은 Q-값의 변화가 발생되었고 전체 Q-값 합이 2.6배 높은 수치를 보였다. 마지막으로 매크로 행동을 이용한 에이전트는 약 절반의 행동 선택으로도 시작위치에서 목표위치까지 이동함을 보였다. 결국 에이전트는 다중 에이전트 환경에서 매크로 행동을 사용함으로써 성능을 향상시키고 목표위치까지 이동하는 거리를 단축해서 학습 속도를 향상시킨다.
강화학습기반 Q-learning 알고리즘은 이산적인 상태와 액션의 조합을 사용하여, 한 번에 하나의 행위에 대한 목표를 학습하는데 유용하다. 여러 액션을 학습하기 위해서는 행위 기반 아키텍처를 적용하고 적절한 행위 조절 방법을 사용하면 로봇으로 하여금 빠르고 신뢰성 있는 액션을 가능하게 할 수 있다. Q-learning은 인기 있는 강화학습 방법으로 단순하고, 수렴성이 있고 사전 훈련 환경에 영향을 덜 받는 특성(off-policy)으로 인해 로봇 학습에 많이 사용되고 있다. 본 논문에서는 Q-learning 알고리즘을 램프 로봇에 적용하여 복수 행위(사람인식, 책상의 물체 인식)를 학습시키는데 사용하였다. Q-learning의 학습속도(learning rate)는 복수 행위 학습 단계의 로봇 성능에 영향을 줄 수 있으므로 학습속도 변경을 통해 최적의 복수 행위 학습 모델을 제시한다.
강화학습의 기본적인 알고리즘으로 많이 사용되고 있는 Q-Learning은 현재 상태에서 취할 수 있는 행동의 보상 중 가장 큰 값을 선택하는 Greedy action을 통해 보상을 최대화하는 방향으로 에이전트를 학습시키는 기법이다. 본 논문에서는 Frozen Lake 8*8 그리드 환경에서 Q-Learning을 사용하여 에이전트의 학습 속도를 높일 수 있는 정책에 관하여 연구하였다. 또한, Q-learning 의 기존 알고리즘과 에이전트의 행동에 '방향성'이라는 속성을 부여한 알고리즘의 학습 결과 비교를 진행하였다. 결과적으로, 본 논문에서 제안한 Q-Learning 정책이 통상적인 알고리즘보다 정확도와 학습 속도 모두 크게 높일 수 있는 것을 분석되었다.
Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.
Transactions on Control, Automation and Systems Engineering
/
제3권3호
/
pp.170-175
/
2001
Q-learning is a kind of reinforcement learning where the agent solves the given task based on rewards received from the environment. Most research done in the field of Q-learning has focused on discrete domains, although the environment with which the agent must interact is generally continuous. Thus we need to devise some methods that enable Q-learning to be applicable to the continuous problem domain. In this paper, an extended fuzzy rule is proposed so that it can incorporate Q-learning. The interpolation technique, which is widely used in memory-based learning, is adopted to represent the appropriate Q value for current state and action pair in each extended fuzzy rule. The resulting structure based on the fuzzy inference system has the capability of solving the continuous state about the environment. The effectiveness of the proposed structure is shown through simulation on the cart-pole system.
강화학습은 제어, 스케쥴링 등 많은 응용분야에서 성공적인 학습 결과를 얻었다. 기본적인 강화학습 알고리즘인 Q-Learning, TD(λ), SARSA 등의 학습 속도의 개선과 기억장소 등의 문제를 해결하기 위해서 여러 함수 근사방법(function approximation methods)이 연구되었다. 대부분의 함수 근사 방법들은 가정을 통하여 강화학습의 일부 특성을 제거하고 사전지식과 사전처리가 필요하다. 예로 Fuzzy Q-Learning은 퍼지 변수를 정의하기 위한 사전 처리가 필요하고, 국소 최소 자승법은 훈련 예제집합을 이용한다. 본 논문에서는 온-라인 퍼지 클러스터링을 이용한 함수 근사 방법인 Fuzzy Q-Map을 제안하다. Fuzzy Q-Map은 사전 지식이 최소한으로 주어진 환경에서, 온라인으로 주어지는 상태를 거리에 따른 소속도(membership degree)를 이용하여 분류하고 행동을 예측한다. Fuzzy Q-Map과 다른 함수 근사 방법인 CMAC와 LWR을 마운틴 카 문제에 적용하여 실험 한 결과 Fuzzy Q-Map은 훈련예제를 사용하지 않는 CMAC보다는 빠르게 최고 예측율에 도달하였고, 훈련 예제를 사용한 LWR보다는 낮은 예측율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.