Motion estimation technique has been used to increase video compression rates in motion video applications. One of the important algorithms to implement the motion estimation technique is search algorithm. Among many search algorithms, the H.263 adopted the Nearest Neighbors algorithm for fast search. In this paper, motion estimation block for the Nearest Neighbors algorithm is designed on FPGA and coded using VHDL and simulated under the Xilinx foundation environments. In the experiment results, we verified that the algorithm was properly designed and performed on the Xilinx FPGA(XCV300Q240)
A modified ABS algorithm for solving a class of singular non-linear systems, $F(x) = 0, $F\;\in \;R^n$, constructed by combining the discreted ABS algorithm and a method of Hoy and Schwetlick (1990), is presented. The second differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.
A modified discretization ABS algorithm for solving a class of singular nonlinear systems, F($\chi$)=0, where $\chi$, F $\in$$R^n$, is presented, constructed by combining a discretization ABS algorithm arid a method of Hoy and Schwetlick (1990). The second order differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.
In this paper, we propose efficient algorithms for parallel prefix computation and sorting on a recursive dual-net. The recursive dual-net $RDN^k$(B) for k > 0 has $(2n_o)^{2K}/2$ nodes and $d_0$ + k links per node, where $n_0$ and $d_0$ are the number of nod es and the node-degree of the base-network B, respectively. Assume that each node holds one data item, the communication and computation time complexities of the algorithm for parallel prefix computation on $RDN^k$(B), k > 0, are $2^{k+1}-2+2^kT_{comm}(0)$ and $2^{k+1}-2+2^kT_{comp}(0)$, respectively, where $T_{comm}(0)$ and $T_{comp}(0)$ are the communication and computation time complexities of the algorithm for parallel prefix computation on the base-network B, respectively. The algorithm for parallel sorting on $RDN^k$(B) is restricted on B = $Q_m$ where $Q_m$ is an m-cube. Assume that each node holds a single data item, the sorting algorithm runs in $O((m2^k)^2)$ computation steps and $O((km2^k)^2)$ communication steps, respectively.
Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.
강화학습은 제어, 스케쥴링 등 많은 응용분야에서 성공적인 학습 결과를 얻었다. 기본적인 강화학습 알고리즘인 Q-Learning, TD(λ), SARSA 등의 학습 속도의 개선과 기억장소 등의 문제를 해결하기 위해서 여러 함수 근사방법(function approximation methods)이 연구되었다. 대부분의 함수 근사 방법들은 가정을 통하여 강화학습의 일부 특성을 제거하고 사전지식과 사전처리가 필요하다. 예로 Fuzzy Q-Learning은 퍼지 변수를 정의하기 위한 사전 처리가 필요하고, 국소 최소 자승법은 훈련 예제집합을 이용한다. 본 논문에서는 온-라인 퍼지 클러스터링을 이용한 함수 근사 방법인 Fuzzy Q-Map을 제안하다. Fuzzy Q-Map은 사전 지식이 최소한으로 주어진 환경에서, 온라인으로 주어지는 상태를 거리에 따른 소속도(membership degree)를 이용하여 분류하고 행동을 예측한다. Fuzzy Q-Map과 다른 함수 근사 방법인 CMAC와 LWR을 마운틴 카 문제에 적용하여 실험 한 결과 Fuzzy Q-Map은 훈련예제를 사용하지 않는 CMAC보다는 빠르게 최고 예측율에 도달하였고, 훈련 예제를 사용한 LWR보다는 낮은 예측율을 보였다.
With recent development of high-speed wide-area wireless networks and wide spread of highperformance wireless devices, the demand on seamless video streaming services in Long Term Evolution (LTE) network environments is ever increasing. To meet the demand and provide enhanced Quality of Experience (QoE) with mobile users, the Dynamic Adaptive Streaming over HTTP (DASH) has been actively studied to achieve QoE enhanced video streaming service in dynamic network environments. However, the existing DASH algorithm to select the quality of requesting video segments is based on a procedural algorithm so that it reveals a limitation to adapt its performance to dynamic network situations. To overcome this limitation this paper proposes a novel quality selection mechanism based on a Deep Q-Network (DQN) model, the DQN-based DASH ABR($DQN_{ABR}$) mechanism. The $DQN_{ABR}$ mechanism replaces the existing DASH ABR algorithm with an intelligent deep learning model which optimizes service quality to mobile users through reinforcement learning. Compared to the existing approaches, the experimental analysis shows that the proposed solution outperforms in terms of adapting to dynamic wireless network situations and improving QoE experience of end users.
본 논문에서는 영상에 존재하는 잡음 (noise) 들을 제거하는 방법 중 하나인 비 지역적 평균 (non-local means, NLM) 알고리즘을 먼저 소개하고 비 지역적 평균 알고리즘의 개선된 방법 중 하나인 주성분 분석 (principal component analysis, PCA) 기반의 알고리즘에 대해서도 소개한다. 주성분 분석을 활용하기 위해서는 선행적으로 공분산 행렬 (covariance matrix)을 구해야 하는데, 영상의 모든 픽셀들을 대상으로 하였을 때 이 공분산 행렬을 구하기 위해서는 큰 크기를 가지는 행렬 곱 연산이 필요하다. 만약 비 지역적 평균 알고리즘의 영상 패치 (neighborhood patch) 의 크기를 S × S = S2, 영상 전체의 픽셀 수를 Q라고 한다면 공분산 행렬을 구하기 위해서는 S2 × Q 크기의 행렬 곱 연산이 필요하게 된다. 이는 영상의 특성을 고려하면 비효율적인 연산이다. 따라서 본 논문에서는 공분산 행렬을 효율적으로 구하기 위해, 영상 패치들간의 일정 간격을 유지하면서 샘플링을 하는 방법을 제안하고자 한다. 최종적으로, 샘플링 후에는 S2 × floor (Width/l) × (Height/l) 크기를 가진 행렬의 곱 연산으로 공분산 행렬을 구할 수 있다.
위성영상 분류작업에서 분류클래스에 대한 샘플화소의 대표성은 분류 정확도에 많은 영향을 미친다. 따라서, 통계적 영상분류방법에서는 분류 기법 자체보다 분류 확률을 결정하는 트레이닝 단계, 즉 샘플화소의 최적화가 필요하다. 본 연구에서는 SPOT XS, LANDSAT TM을 이용한 위성영상 화소분류작업에서 분류 이전단계, 즉 샘플화소의 정규성을 계산하여, 정규성에 악영향을 미치는 화소를 객관적 기준으로 조정하였다. 정규화과정을 위한 유전자 알고리즘 적용의 생존확률 평가함수로 다변량 Q-Q plot의 상관계수와 트레이닝의 분산값을 고려하였으며, 5% 유의수준을 적용하였다. 연구결과, 실험대상지역의 경우, 유전자 알고리즘을 이용한 트레이닝 정규화 결과가 대부분의 클래스에 대하여 그 평균과 분산을 모집단에 근사시키고 있다는 것을 입증하였고, 해당 클래스의 모집단 분포를 예측할 수 있는 가능성을 제시하였다.
본 논문에서는 UWB 기술 기반 WiMedia 무선 USB Distributed Medium Access Control (D-MAC) 프로토콜의 공평하고 분산적인 SoQ기반 Distributed Reservation Protocol (DRP) 타임슬롯 자원 할당 방법의 성능을 분석하고, DRP 예약 충돌을 회피하기 위해 릴레이 통신 기술을 적용한 SoQ 릴레이 전송 프로토콜을 제안한다. 본 논문에서 제안하는 SoQ 릴레이 전송 프로토콜은 Satisfaction of QoS (SoQ) 알고리즘을 각 단말 디바이스에서 분산적으로 실행하고, 충돌대상 디바이스에게 예약된 QoS 자원을 유지할 수 있도록 Direct Link 뿐만 아니라 릴레이 노드를 경유하여 또 다른 Indirect Link 링크를 예약할 수 있는 자원 예약 프로토콜을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.