Among the techniques of reinforcement learning, Q-Learning means learning optimal policies by learning Q functions that perform actionsin a given state and predict future efficient expectations. Q-Learning is widely used as a basic algorithm for reinforcement learning. In this paper, we studied the effectiveness of selecting and learning efficient paths by designing policies and rewards based on Q-Learning. In addition, the results of the existing algorithm and punishment compensation policy and the proposed punishment reinforcement policy were compared by applying the same number of times of learning to the 8x8 grid environment of the Frozen Lake game. Through this comparison, it was analyzed that the Q-Learning punishment reinforcement policy proposed in this paper can significantly increase the learning speed compared to the application of conventional algorithms.
Journal of the Institute of Electronics Engineers of Korea TE
/
v.39
no.1
/
pp.83-90
/
2002
This paper proposed the strategy learning method by means of the fusion of Back-Propagation neural network and Q learning algorithm for two-person, deterministic janggi board game. The learning process is accomplished simply through the playing each other. The system consists of two parts of move generator and search kernel. The one consists of move generator generating the moves on the board, the other consists of back-propagation and Q learning plus $\alpha$$\beta$ search algorithm in an attempt to learn the evaluation function. while temporal difference learns the discrepancy between the adjacent rewards, Q learning acquires the optimal policies even when there is no prior knowledge of effects of its moves on the environment through the learning of the evaluation function for the augmented rewards. Depended on the evaluation function through lots of games through the learning procedure it proved that the percentage won is linearly proportional to the portion of learning in general.
지식을 관리하는 것에 주력했던 기존의 인공지능 연구 방향은 동적으로 움직이는 외부 환경에서 적응할 수 있는 시스템 구축으로 변화하고 있다. 이러한 시스템의 기본 능력을 이루는 많은 학습방법 중에서 비교적 최근에 제시된 강화학습은 일반적인 사례에 적용하기 쉽고 동적인 환경에서 뛰어난 적응 능력을 보여주었다. 이런 장점을 바탕으로 강화학습은 에이전트 연구에 많이 사용되고 있다. 하지만, 현재까지 연구결과는 강화학습으로 구축된 에이전트로 해결할 수 있는 작업의 난이도에 한계가 있음을 보이고 있다. 특히, 복수의 부분 작업으로 구성되어 있는 작업을 처리할 경우에 기본의 강화학습 방법은 문제 해결에 한계를 보여주고 있다. 본 논문에서는 복수의 부분 작업으로 구성된 작업이 왜 처리하기 힘든가를 분석하고, 이런 문제를 처리할 수 있는 방안을 제안한다. 본 논문에서 제안하고 있는 EQ-Learning의 강화학습 방법의 대표적인 Q-Learning을 확장시켜 문제를 해결한다. 이 방법은 각각의 부분 작업 해결 방안을 학습시키고 그 학습 결과들의 적절한 순서를 찾아내 전체 작업을 해결한다. EQ-Learning의 타당성을 검증하기 위해 격자 공간에서 복수의 부분작업으로 구성된 미로 문제를 통하여 실험하였다.
KIPS Transactions on Computer and Communication Systems
/
v.10
no.5
/
pp.155-162
/
2021
n-step TD learning is a combination of Monte Carlo method and one-step TD learning. If appropriate n is selected, n-step TD learning is known as an algorithm that performs better than Monte Carlo method and 1-step TD learning, but it is difficult to select the best values of n. In order to solve the difficulty of selecting the values of n in n-step TD learning, in this paper, using the characteristic that overestimation of Q can improve the performance of initial learning and that all n-step returns have similar values for Q ≈ Q*, we propose a new learning target, which is composed of the maximum and the mean of all k-step returns for 1 ≤ k ≤ n. Finally, in OpenAI Gym's Atari game environment, we compare the proposed algorithm with n-step TD learning and proved that the proposed algorithm is superior to n-step TD learning algorithm.
The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless these algorithms can learn the optimal policy if the agent can visit every state-action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem, we suggest Adaptive Mediation-based Modular Q-Learning (AMMQL) as an improvement of the existing Modular Q-Learning (MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state space effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. In this paper we use the AMMQL algorithn as a learning method for dynamic positioning of the robot soccer agent, and implement a robot soccer agent system called Cogitoniks.
In this paper, we propose Ant-Q learning Algorithm[1], which uses the habits of biological ants, to find a new way to solve Stable Marriage Problem(SMP)[3] presented by Gale-Shapley[2]. The issue of SMP is to find optimum matching for a stable marriage based on their preference lists (PL). The problem of Gale-Shapley algorithm is to get a stable matching for only male (or female). We propose other way to satisfy various requirements for SMP. ACS(Ant colony system) is an swarm intelligence method to find optimal solution by using phermone of ants. We try to improve ACS technique by adding Q learning[9] concept. This Ant-Q method can solve SMP problem for various requirements. The experiment results shows the proposed method is good for the problem.
Q-Learning is a technique widely used as a basic algorithm for reinforcement learning. Q-Learning trains the agent in the direction of maximizing the reward through the greedy action that selects the largest value among the rewards of the actions that can be taken in the current state. In this paper, we studied a policy that can speed up agent training using Q-Learning in Frozen Lake 8×8 grid environment. In addition, the training results of the existing algorithm of Q-learning and the algorithm that gave the attribute 'direction' to agent movement were compared. As a result, it was analyzed that the Q-Learning policy proposed in this paper can significantly increase both the accuracy and training speed compared to the general algorithm.
강화학습은 게임의 인공지능을 대체할 수 있는 수단이지만 불완전한 게임에서 학습하기 힘들다. 학습하기 복잡한 불완전안 카드게임에서 휴리스틱한 전략을 만들고 비슷한 상태끼리 묶으면서 학습의 복잡성을 낮추었다. 인공신경망 없이 Q-러닝만으로 게임을 5만판을 통해서 상태에 따른 전략을 학습하였다. 그 결과 동일한 전략만을 사용하는 대결보다 승률이 높게 나왔고, 다양한 상태에서 다른 전략을 선택하는 것을 관찰하였다.
Board games have many game characters and many state spaces. Therefore, games must be long learning. This paper used reinforcement learning algorithm. But, there is weakness with reinforcement learning. At the beginning of learning, reinforcement learning has the drawback of slow learning speed. Therefore, we tried to improve the learning speed by using the heuristic using the knowledge of the problem domain considering the game tree when there is the same best value during learning. In order to compare the existing character the improved one. I produced a board game. So I compete with one-sided attacking character. Improved character attacked the opponent's one considering the game tree. As a result of experiment, improved character's capability was improved on learning speed.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.6
/
pp.115-123
/
2017
The purpose of this research provides analyzes the learning attitude types by Chinese students in Korea. For this purpose, we have adopted of the practical research methodology and quantitative research methodology, which can objectively determine the individual's ideas and behavior of the "Q methodology". To this end, This research is targeted at Chinese students in the students' learning attitude implemented by 4 types and analyzes questionnaires of each type. The analysis results are categorized as the type of learning environment is not satisfied; positively cooperate with the learning process and the environment; the lack of learning motivation; and paradoxical learning state. As a result of this discussion, Chinese students should have clear motivation to learn new things; improve their korean language ability; and need to know their clear learning methods. Nowadays, more and more Chinese students are choosing study abroad. Therefore, the learning attitudes and learning abilities as two of the most important of focus from society.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.