• 제목/요약/키워드: Q, S start and end point

검색결과 2건 처리시간 0.016초

조기심실수축 분류를 위한 위상 변이 추적 기반의 QRS 특징점 검출 (Detection of QRS Feature Based on Phase Transition Tracking for Premature Ventricular Contraction Classification)

  • 조익성;윤정오;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.427-436
    • /
    • 2016
  • 일반적으로 QRS간격은 시작점을 기준으로 끝점까지의 간격을 말하지만 그 기준이 모호하고 Q와 S의 검출이 정확하지 않아 부정맥 분류 성능을 저하시키는 경우가 발생한다. 본 연구에서는 심전도신호 중 가장 큰 피크인 R파를 정확히 검출한 후 이를 기준으로 위상 변이 추적 기법을 적용하여 Q와 S의 시작점과 끝점을 추출하는 방법을 제안한다. 먼저 전처리 과정을 통해 잡음이 제거된 정확한 R파를 검출한다. 이후 심전도신호의 미분값을 통해 QRS패턴을 분류하고, R파를 기준으로 위상이 변화되는 방향과 횟수를 추적함으로써 Q, S의 시작점과 끝점을 추출하는 방법이다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 R파 검출율은 99.60%의 성능을 나타내었고, 위상 변이 추적 기법의 경우 조기심실수축(PVC)이 30개 이상 포함된 MIT-BIH 10개의 레코드를 대상으로 조기심실수축 분류율을 각각 비교 분석한 결과 94.12%로 우수하게 나타났다.

이중 심층 Q 네트워크 기반 장애물 회피 경로 계획 (Path Planning with Obstacle Avoidance Based on Double Deep Q Networks)

  • 자오 용지앙;첸센폰;성승제;허정규;임창균
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.231-240
    • /
    • 2023
  • 심층 강화 학습(Deep Reinforcement Learning)을 사용한 경로 계획에서 장애물을 자동으로 회피하기 위해 로봇을 학습시키는 일은 쉬운 일이 아니다. 많은 연구자가 DRL을 사용하여 주어진 환경에서 로봇 학습을 통해 장애물 회피하여 경로 계획을 수립하려는 가능성을 시도하였다. 그러나 다양한 환경에서 로봇과 장착된 센서의 오는 다양한 요인 때문에 주어진 시나리오에서 로봇이 모든 장애물을 완전히 회피하여 이동하는 것을 실현하는 일은 흔치 않다. 이러한 문제 해결의 가능성과 장애물을 회피 경로 계획 실험을 위해 테스트베드를 만들었고 로봇에 카메라를 장착하였다. 이 로봇의 목표는 가능한 한 빨리 벽과 장애물을 피해 시작점에서 끝점까지 도달하는 것이다. 본 논문에서는 벽과 장애물을 회피하기 위한 DRL의 가능성을 검증하기 위해 이중 심층 Q 네트워크(DDQN)를 제안하였다. 실험에 사용된 로봇은 Jetbot이며 자동화된 경로 계획에서 장애물 회피가 필요한 일부 로봇 작업 시나리오에 적용할 수 있을 것이다.