• Title/Summary/Keyword: Pyruvate

Search Result 635, Processing Time 0.03 seconds

Biochemical Properties of Lactate Dehydrogenase Eye-Specific C4 Isozyme: Lepomis macrochirus and Micropterus salmoides (젖산탈수소효소 eye-specific C4 동위효소의 생화학적 특성: 파랑볼우럭(Lepomis macrochirus)과 큰입우럭(Micropterus salmoides))

  • Yum, Jung-Joo;Ku, Bo-Ra
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.209-219
    • /
    • 2012
  • The properties of lactate dehydrogenase (LDH, EC 1.1.1.27) eye-specific $C_4$ isozyme were studied by polyacrylamide gel electrophoresis, Western blotting, immunoprecipitation, and enzyme kinetics. Furthermore, we proposed the optimal conditions for measuring the activity of LDH eye-specific $C_4$ isozyme. The isozymes were detected in the cytosol of eye tissues from Lepomis macrochirus and Micropterus salmoides and were more similar to the $A_4$ than the $B_4$ isozyme. LDH/CS in the eye tissue of L. macrochirus was increased in September, so the ratio of anaerobic metabolism was high. The electrophoretic patterns of mitochondrial LDH were similar to those of cytosolic LDH in the eye tissues of L. macrochirus and Micropterus salmoides. LDH eye-specific $C_4$ isozyme from eye tissue was purified by preparative native-PAGE. The activities of LDH eye-specific $C_4$ isozymes in L. macrochirus and M. salmoides were reduced at concentrations greater than 0.2 mM and 0.1 mM of pyruvate, respectively. These concentrations remained at 5.2% and 15.8% as a result of the inhibition by 10 mM of pyruvate, so the degree of inhibition was very high. The LDH activities of eye tissues were reduced at concentrations greater than 22 mM and 24 mM of lactate, respectively, in L. macrochirus and M. salmoides. The ${K_m}^{PYR}$ of eye-specific $C_4$ was 0.088 mM in L. macrochirus and it was 0.033 mM in M. salmoides. The activities of cytosolic and mitochondrial eye-specific $C_4$ isozymes were high in ${\alpha}$-ketobutyric acid. Furthermore, the activities of eye tissue and eye-specific $C_4$ isozyme had to be measured with 0.5 mM of pyruvate and a buffer solution of pH 7.5. As a conclusion, the eye-specific $C_4$ isozyme in M. salmoides has a high affinity for pyruvate and exhibits maximum activity at a lower concentration of pyruvate and at higher concentration of lactate than that in L. macrochirus. Therefore, it seems that the energy produced by the LDH eye-specific $C_4$ isozyme in M. salmoides was used at the first stage of predatory behavior.

Effect of Pyruvate and Aspartate Enriched University of Wisconsin Solution on Myocardial Protection (피루브산염과 아스파라진산염을 첨가한 위스콘신대학 용액의 심근보호 효과)

  • 이정렬;김준석;한재진;강문철
    • Journal of Chest Surgery
    • /
    • v.35 no.1
    • /
    • pp.11-19
    • /
    • 2002
  • Background: Ischemia-reperfusion myocardial injury is an important factor to determine the early and the late mortality of transplanted patients. Recently, modulation of the cytosolic NADH/NAD+ ratio by Pyruvate and aspartate was tested to Protect the heart from ischemia-reperfusion injury. Material and Method: We added pyruvate and aspartate to the University of Wisconsin solution, and evaluated their effect on myocardial protection. We used 16 piglet(age 1 to 3 days) hearts. Eight hearts were arrested with and stored in the University of Wisconsin solution(UW solution) for 24 hours(control group), and the other eight hearts were arrested with and stored in the modified UW solution added pyruvate(3mmol/L) and aspartate(2 mmol/L)(test group). All hearts underwent modified reperfusion with blood cardioplegic solution followed by conversion to a left-sided working model with perfusion from a support pig. And then, we measured stroke work index(SWI), high-energy phosphate stores, and myocardial water content of the hearts. SWI was calculated at left ventricular end-diastolic pressures of 3, 6, 9, and 12 mmHg after 60 and 120 minutes reperfusion, respectively, Result: At 60 minutes and 120 minutes after reperfusion, SWI was higher in the test group than in the control group significantly. The levels of AMP, ADP, ATP of the test group were also higher. But, the creatine phosphate level and myocardial water content were similar in the two groups. Conclusion: From these results, we could Prove that pyruvate and aspartate enhance cardiac contractility and high-energy phosphate stores after ischemia.

Determination of Microquantities of Ammonia by Enzymatic Analysis (효소분석법에 의한 미량암모니아의 정량)

  • 성하진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.495-500
    • /
    • 1986
  • Enzymatic micro-assay methods were studied those were capable of determining ammonia down to 10$^{-5}$M(0.01 $\mu$mole/ml) in the presence of other nitrogenous compounds such as protein and amino acid. Microquantities of ammonia (0.01-0.1 $\mu$mole) could be determined indirectly by measuring phosphorous, one of the products of the enzymatic reaction catalyzed by glutamine synthetase. In this reaction, L-glutamate, ATP and ammonium chloride were used as substrates, and phosphorous was formed in propotion to the concentration of ammonium chloride In the reaction mixture. Another procedure was examined in which glutamine synthetase reaction coupled with pyruvate kinase and lactate dehydrogenase reactions was used. One mililiter of the assay mixture contained; phosphoenol pyruvate, 3 mM, L-glutamate, 10 mM; ATP, 1mM: MgSO$_4$, 20 mM: KCl, 75mM: NADH, 0.2mM: Tris-HCl buffer(pH 7.0), 100mM; pyruvate kinase, 10 U: lactate dehydrogenase, 12 U and glutamine synthetase, 4 U. After preincubation for 20 min at 3$0^{\circ}C$, NH$_4$Cl was added and the rates of NADH oxidation were followed at 340nm. The effective range of this method was proved to be from 0.01 to 0.05 $\mu$mole/$m{\ell}$. Glutamine synthetase reaction coupled with glutamate synthase reaction could also be effectively used for determining microquantities of ammonia. The one mililiter assay mixture contained; ATP, 5mM: L-glutamate, 5mM; L-ketoglutarate, 5mM; MgCl$_2$, 15mM; NADPH, 0.15mM; Tris-HCl buffer(pH 7.0); 100mM; glutamine synthetase, 1U and glutamate synthase, 0.5U. After preincubation for 20min at 3$0^{\circ}C$ NH$_4$Cl was added and the rates of NADPH oxidation were followed at 340nm. The effective range of this procedure was appeared to be from 0.01 to 0.05$\mu$mole/$m{\ell}$.

  • PDF

Production of 3,4-dihydroxyphenyl-L-alanine by Using the ${\beta}$-Tyrosinase of Citrobacter freundii Overexpressed in Recombinant Escherichia coli. (재조합 대장균에서 과발현된 Citorbacter Freundii KCTC2006 유래의 ${\beta}$-Tyrosinase를 이용한 3,4-Dihydroxyphenyl-L-alannine의 생산)

  • Lee, Seung-Goo;Ro, Hyeon-Su;Hong, Seung-Pyo;Lee, Kyu-Jong;Wang, Ji-Won;Tae, Dong-Nyeon;Uhm, Ki-Nam;Bang, Sang-Gu;Kim, Young-Jun;Sung, Moon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 1996
  • By using the ${\beta}$-tyrosinase of Citrobacter freundii KCT2006, which was cloned and overexpressed in Escherichia coli, 3,4-dihydroxy phenyl-L-alanine (L-DOPA) was synthesized efficiently from pyrocatechol, sodium pyruvate, and ammonium acetate. Optimal temperature and pH for the reaction were determined to be about 18$^{\circ}C$ and 8.5, respectively. The effects of substrate concentrations were also examined at different concentrations of ammonium acetate, sodium pyruvate, and pyrocatechol. Ammoniumacetate and sodium pyruvate increased the reaction rate until the concentrations reached to 300mM and 50mM, respectively. Although pyrocatechol showed the optimal concentration at 20mM, it was controlled between 20mM and 50mM to avoid the depletion of substrate during the enzymatic synthesis. Meanwhile the synthetic rate was improved about 20% when ethanol was included in the reaction solution. Based on above results, a reaction medium for the productin of L-DOPA was prepared and incubated with 1 unit/ml of ${\beta}$-tyrosinase. Pyrocatechol and sodium pyruvate was added to the reaction solutin intermittently to avoid the substrate depletion during the enzymatic reaction. After 24 hour of reaction, 31.6g/l of L-DOPA was accumulated in the reaction solution as soluble and precipitated ones and the conversion yield was about 85.2%.

  • PDF

A ubiquitin-proteasome system as a determination factor involved in methylmercury toxicity

  • Hwang, Gi-Wook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.46-54
    • /
    • 2006
  • The methylmercury (MeHg) is a toxic environmental pollutant, causing serious neurological and developmental effects in humans. Recent epidemiological studies have indicated that ingestion of MeHg in fish during pregnancy can result in neuroethological effects in the offspring. However, the mechanism underlying the MeHg-toxicity is not fully understood. To elucidate the mechanisms of toxicity of MeHg and of defense against MeHg, we searched for factors that determine the sensitivity of yeast cells to MeHg, and found that overexpression of Cdc34, a ubiquitin-conjugating enzyme (E2) that is a component of the ubiquitin-proteasome (UP) system, induces a resistance to MeHg toxicity in both yeast and human cells. The UP system is involved in the intracellular degradation of proteins. When Cdc34 is overexpressed in cells, ubiquitination reactions are activated and the degradation of certain proteins by the UP system is enhanced. Therefore, it seems likely that certain as-yet-unidentified proteins that increase MeHg toxicity might exist in cons and that toxicity might be reduced by the enhanced degradation of such proteins, mediated by the UP system, when Cdc34 is overexpressed. SCF ubiquitin-ligase is a component of UP system and consists of Skpl, the scaffold protein Cdc53, the RING-finger protein Hrt1, and one member of the family of F-box proteins. The F-box proteins directly bind to the substrates and are the determinants of substrate specificity of SCF. Therefore, we searched for the f-box protein that cofers resistance to MeHg, and found that overexpression of Hrt3 or Yi1224w induced resistance to MeHg toxicity in yeast cells. Since the protein(5) that enhance toxicity of MeHg might plausibly be induced in substrates of both f-box proteins, we next searched for substrate proteins that are recognized by Hrt3 or Y1r224w using two-hybrid screen. We found that Did3 or Crsl interacts with Hrt3; and Eno2 interacts with Yir224w. The yeast cells that overexpressed each those proteins showed hypersensitivity to MeHg, respectively, indicating that those proteins enhance the MeHg toxicity. Both Dld3 and Eno2 are proteins involved in the synthesis of pyruvate, and overexpression of both proteins might induce increase in interacellular levels of pyruvate. Deletion of Yi1006w that transports pyruvate into the mitochondria induced aresistance to MeHg. These results suggest that the promotion of the pyruvate irdlowinto the mitochondria might enhance MeHg toxicity. This study providesimportant keyfor the elucidauon of the molecular mechanism of MeHg toxicity.

  • PDF

Nucleotide Activation of Catabolic Threonine Dehydratase from Serratia marcescens (뉴클레오타이드에 의한 Serratia marcescens Catabolic Threonine Dehydratase의 활성화)

  • Choi, Byung-Bum
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • The catabolic threonine dehydratase from Serratia marcescens ATCC 25419 was purified to homogeniety using Sephadex G-200 gel filtration and AMP-Sepharose 4B affinity chromatography. The molecular weight of the native enzyme was 120,000 by native pore gradient PAGE. The enzyme was composed of four identical subunits with subunit molecular weights of 30,000 by SDS-PAGE. The Km values of the enzyme for L-threonine with and without AMP were 7.3 and 92 mM, respectively. There were 2 moles of pyridoxal phosphate and 16 moles of free -SH groups per 1 mole of enzyme. The enzyme was inhibited by $\alpha$-ketobutyrate, pyruvate, glyoxylate, and phosphoenol pyruvate(PEP) in the presence of AMP, yet stimulated by cAMP and ADP. For enzyme properties in comparison with S. marcescens, E. coli, and S. typhimurium enzyme, such as the PLP content, number of free sulfhydryl groups, and existence of ADP binding site, the S. marcescens enzyme was more similar to the S. typhimurium enzyme than the E. coli enzyme. Of the three enteric bacteria, the E. coli and S. typhimurium enzyme was increased the activity by ADP and cAMP, respectively, but only the S. marcescens enzyme was increased the activity by both ADP and cAMP. Therefore, the subtle differences in the properties between enzymes from the three enteric bacteria may represent minor structural differences among these enzymes and warrants further study.

Effect of Chemical Properties of Cultivation Soils on the Plant Growth and the Quality of Garlic (재배지 토양의 화학성이 마늘의 생육 및 품질에 미치는 영향)

  • Kim, Chang-Bae;Kim, Chan-Yong;Park, Man;Lee, Dong-Hoon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2000
  • Effects of chemical properties of cultivation soils on the growth and quality of garlics were investigated. Garlics were cultivated in Uisung and Yechun, one of the major areas of garlic production, where upland and paddy fields have been used for garlic production for many years. Contents of phosphate, sulfur and potassium in the soils of paddy fields were relatively higher than those in the soils of upland fields, suggesting that the accumulation of inorganic salts has been progressed in the paddy fields. Soils of Uisung area showed higher pH s and lower contents of available phosphate compared to those of Yechon area. This result implies that the soils of Uisung area provide somewhat better chemical properties for garlic growth than those of Yechun area. Contents of inorganic salts such as phosphate, potassium and magnesium in the soils significantly affected the growth and quality of garlics. Garlics grown in the soils with lower contents of these inorganic salts exhibited better growth status and contained more pyruvate. More pyruvate was found in the garlics grown in upland fields than in paddy fields. Therefore, it is apparent that the accumulation of inorganic salts, especially available phosphate, in cultivation soils leads to the inhibition of garlic growth and in turn to the deterioration of garlic quality.

  • PDF

Effects of medicinal herb water extracts on expression of hepatic glucokinase, pyruvate dehydrogenase and acetyl-CoA carboxylase mRNA (한약재 물 추출물이 간세포 Glucokinase, Pyruvate Dehydrogenase, Acetyl-CoA Carboxylase mRNA 발현에 미치는 영향)

  • Kim, Hyun Sook;Kim, Tae Woo;Kim, Dae Jung;Lee, Jae Sung;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.46 no.2
    • /
    • pp.119-125
    • /
    • 2013
  • We studied the anti-diabetic effects of medicinal herb water extracts on expression of hepatic glucokinase (GCK), pyruvate dehydrogenase (PDH), and acetyl-CoA carboxylase (ACC) mRNA. The medicinal herbs used for experiments were Cornus officinalis (CO), Paeonia suffruticosa Andrews (PSA), Discorea japonica Thunb. (DJ), Rehmannia glutinosa (RG), Lycium chinense (LC), and Pyrus pyrifolia (PP). For GCK mRNA expression, CO, RG, and LC water extracts exhibited a more effective activity than other extracts. Cells treated with RG and LC water extracts showed an increase in expression of PDH mRNA to 191% and 124%, respectively, compared to control. Expression of ACC mRNA was significantly higher in LC water extract. These data indicate that CO, RG, and LC water extracts stimulates expression of hepatic GCK, PDH, and ACC mRNA.

In ovo feeding of creatine pyruvate alters energy metabolism in muscle of embryos and post-hatch broilers

  • Yang, Tong;Zhao, Minmeng;Li, Jiaolong;Zhang, Lin;Jiang, Yun;Zhou, Guanghong;Gao, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.834-841
    • /
    • 2019
  • Objective: This study was conducted to investigate the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on the energy metabolism in thigh muscle of embryos and neonatal broilers. Methods: A total of 960 eggs were randomly assigned to three treatments: i) non-injected control group, ii) saline group injected with 0.6 mL of physiological saline (0.75%), and iii) CrPyr group injected with 0.6 mL of physiologi-cal saline (0.75%) containing 12 mg CrPyr/egg on 17.5 d of incubation. After hatching, 120 male chicks (close to the average body weight of the pooled group) in each group were randomly assigned to eight replications. The feeding experiment lasted 7 days. Results: The results showed that IOF of CrPyr increased glucose concentrations in the thigh muscle of broilers on 2 d after injection (p<0.05). Compared with the control and saline groups, the concentration of creatine in CrPyr group was increased on 2 d after injection and the day of hatch (p<0.05). Moreover, IOF of CrPyr increased the creatine kinase activity at hatch and increased the activities of hexokinase and pyruvate kinase on 2 d after injection and the day of hatch (p<0.05). Chicks in CrPyr group showed higher mRNA expressions of glucose transporter 3 (GLUT3) and GLUT8 on the day of hatch (p<0.05). Conclusion: These results demonstrated that IOF of CrPyr was beneficial to enhance muscle energy reserves of em-bryos and hatchlings.

The effect of thiamine and endurance training of 4weeks for PDH activity in skeletal muscle (4주간의 지구성 트레이닝과 thiamine 섭취가 골격근 내 PDH 활성에 미치는 영향)

  • Hwang, Hyejung;Km, Jisoo;Jang, Jiwoong;Lim, Kiwon;Joung, Seungsam;Choi, Sungkeun
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.3
    • /
    • pp.649-658
    • /
    • 2016
  • This study aimed to analyze PDH(Pyruvate dehydrogenase) and protein expression of PDK4(Pyruvate dehydrogenase kinase 4), PDP1(PDH phosphatase 1), enzymes that are involved in the activation of PDH, in skeletal muscle and to investigate the concentration of thiamine administration in liver and muscle following 4 weeks of endurance training. Methods : 6 weeks old male ICR mice were divided into two groups: sedentary group (CON, n=10; TH, n=10), and exercise group (EX, n=10, THEX, n=10). Thiamine(thiamine tetrahydrofurfuryl disulfide: TTFD) TTFD was orally administrated into TH and THEX groups in 50mg/kg body weight for 4 weeks. Treadmill training was performed in EX and THEX groups at about 70% of VO2max for 5 times a week for 4 weeks. Results : In this study, the concentration of glycogen was significantly increased following 4 weeks of endurance training, but a significant difference was not found following thiamine administration. Similarly, there was a significant effect of the training on PDH and the expression of PDK4 and PDP1 as PDH was increased by about 40% along with the increase in PDK4 and PDP1. However, there was no significant difference found between the groups following thiamine administration. Discussion : This result shows that there was no synergistic effect of thiamine administration, potentially due to adaptation of skeletal muscle from a long-term endurance training. Therefore, it will be necessary to consider the intake timing of thiamine and to analyze proteins that are related to PDH following the administration of complex carbohydrates.